Isomap_on_Swiss_roll.png


Summary

Description
English: Replication of Figure 3 of A global geometric framework for nonlinear dimensionality reduction

JB Tenenbaum, V Silva, JC Langford - science, 2000

```python import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import numpy as np from scipy.spatial import KDTree from networkx import Graph, shortest_path import networkx as nx

  1. Generate data

N = 2000 K=7 x = np.random.rand(N,2) def F(X):

   if X.ndim == 1:
     X = X[None,:]
   X1 = X[:,0]
   X2 = X[:,1]
   Y1 = (X1 + 0.5)*np.cos(10*X1)
   Y2 = X2
   Y3 = (X1 + 0.5)*np.sin(10*X1)
   return np.column_stack((Y1, Y2, Y3))

y = F(x)

  1. Find points

x_left_id = np.argmin(np.sum((x - [0.15,0.15])**2, axis=1)) x_right_id = np.argmin(np.sum((x - [0.85,0.85])**2, axis=1)) x_left = x[x_left_id] x_right = x[x_right_id]

  1. Build KNN graph on y

knn = KDTree(y) G_y = nx.Graph() for i in range(N):

   idx = knn.query([y[i]], k=K)[1][0]
   for j in idx:
       G_y.add_edge(i,j)

G_x = nx.Graph()

  1. Convert edges from G_y to G_x

for e in G_y.edges:

   G_x.add_edge(e[0], e[1])
  1. Get shortest path nodes

path_x = shortest_path(G_x, x_left_id, x_right_id, 'weight') path_y = [p for p in shortest_path(G_y, x_left_id, x_right_id, 'weight')]

  1. Plot

fig = plt.figure(figsize=(20, 20))

  1. A

ax = fig.add_subplot(221, projection='3d') ax.scatter(y[:,0], y[:,1], y[:,2], c='k') ax.scatter(F(x_left)[0,0], F(x_left)[0,1], F(x_left)[0,2], c='b', marker='o', s=100) ax.scatter(F(x_right)[0,0], F(x_right)[0,1], F(x_right)[0,2], c='b', marker='o', s=100) t = np.linspace(0,1,1000) ax.plot(F(x_left + t[:,None]*(x_right-x_left))[:,0],

       F(x_left + t[:,None]*(x_right-x_left))[:,1],
       F(x_left + t[:,None]*(x_right-x_left))[:,2], c='b')

ax.set_title('A')

  1. B

ax = fig.add_subplot(222, projection='3d') ax.scatter(y[:,0], y[:,1], y[:,2], c='k') for e in G_y.edges:

   ax.plot(y[e,0], y[e,1], y[e,2], c='grey')

ax.plot(np.array(y)[path_y,0], np.array(y)[path_y,1], np.array(y)[path_y,2], c='r') ax.set_title('B')

  1. C

ax = fig.add_subplot(212) ax.scatter(x[:,0], x[:,1], c='k') for e in G_x.edges:

   ax.plot(x[e,0], x[e,1], c='grey')  

ax.plot([x_left[0], x_right[0]], [x_left[1], x_right[1]], c='b') ax.plot(np.array(x)[path_x,0], np.array(x)[path_x,1], c='r') ax.set_title('C')

plt.tight_layout() plt.show()

```
Date
Source Own work
Author Cosmia Nebula

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

29 July 2023