Witting_polytope

Witting polytope

Witting polytope

Add article description


In 4-dimensional complex geometry, the Witting polytope is a regular complex polytope, named as: 3{3}3{3}3{3}3, and Coxeter diagram . It has 240 vertices, 2160 3{} edges, 2160 3{3}3 faces, and 240 3{3}3{3}3 cells. It is self-dual. Each vertex belongs to 27 edges, 72 faces, and 27 cells, corresponding to the Hessian polyhedron vertex figure.

Witting polytope
Schläfli symbol3{3}3{3}3{3}3
Coxeter diagram
Cells240 3{3}3{3}3
Faces2160 3{3}3
Edges2160 3{}
Vertices240
Petrie polygon30-gon
van Oss polygon90 3{4}3
Shephard groupL4 = 3[3]3[3]3[3]3, order 155,520
Dual polyhedronSelf-dual
PropertiesRegular

Symmetry

Its symmetry by 3[3]3[3]3[3]3 or , order 155,520.[1] It has 240 copies of , order 648 at each cell.[2]

Structure

The configuration matrix is:[3]

The number of vertices, edges, faces, and cells are seen in the diagonal of the matrix. These are computed by the order of the group divided by the order of the subgroup, by removing certain complex reflections, shown with X below. The number of elements of the k-faces are seen in rows below the diagonal. The number of elements in the vertex figure, etc., are given in rows above the digonal.

More information L4, k-face ...

Coordinates

Its 240 vertices are given coordinates in :

(0, ±ωμ, -±ων, ±ωλ)
(-±ωμ, 0, ±ων, ±ωλ)
ωμ, -±ων, 0, ±ωλ)
(-±ωλ, -±ωμ, -±ων, 0)
(±iωλ√3, 0, 0, 0)
(0, ±iωλ√3, 0, 0)
(0, 0, ±iωλ√3, 0)
(0, 0, 0, ±iωλ√3)

where .

The last 6 points form hexagonal holes on one of its 40 diameters. There are 40 hyperplanes contain central 3{3}3{4}2, figures, with 72 vertices.

Witting configuration

Coxeter named it after Alexander Witting for being a Witting configuration in complex projective 3-space:[4]

or

The Witting configuration is related to the finite space PG(3,22), consisting of 85 points, 357 lines, and 85 planes.[5]

Its 240 vertices are shared with the real 8-dimensional polytope 421, . Its 2160 3-edges are sometimes drawn as 6480 simple edges, slightly less than the 6720 edges of 421. The 240 difference is accounted by 40 central hexagons in 421 whose edges are not included in 3{3}3{3}3{3}3.[6]

The honeycomb of Witting polytopes

The regular Witting polytope has one further stage as a 4-dimensional honeycomb, . It has the Witting polytope as both its facets, and vertex figure. It is self-dual, and its dual coincides with itself.[7]

Hyperplane sections of this honeycomb include 3-dimensional honeycombs .

The honeycomb of Witting polytopes has a real representation as the 8-dimensional polytope 521, .

Its f-vector element counts are in proportion: 1, 80, 270, 80, 1.[8] The configuration matrix for the honeycomb is:

More information L5, k-face ...

Notes

  1. Coxeter Regular Convex Polytopes, 12.5 The Witting polytope
  2. Coxeter, Complex Regular Polytopes, p.134
  3. Coxeter, Complex Regular polytopes, p.132
  4. Alexander Witting, Ueber Jacobi'sche Functionen kter Ordnung Zweier Variabler, Mathemematische Annalen 29 (1887), 157-70, see especially p.169
  5. Coxeter, Complex regular polytopes, p.133
  6. Coxeter, Complex Regular Polytopes, p.134
  7. Coxeter, Complex Regular Polytopes, p.135
  8. Coxeter Regular Convex Polytopes, 12.5 The Witting polytope

References

  • Coxeter, H. S. M. and Moser, W. O. J.; Generators and Relations for Discrete Groups (1965), esp pp 67–80.
  • Coxeter, H. S. M.; Regular Complex Polytopes, Cambridge University Press, second edition (1991). pp. 132–5, 143, 146, 152.
  • Coxeter, H. S. M. and Shephard, G.C.; Portraits of a family of complex polytopes, Leonardo Vol 25, No 3/4, (1992), pp 239–244

Share this article:

This article uses material from the Wikipedia article Witting_polytope, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.