Tornado_outbreak_of_March_21–22,_1952

Tornado outbreak of March 21–22, 1952

Tornado outbreak of March 21–22, 1952

Severe weather event in the United States


On March 21–22, 1952, a severe tornado outbreak generated eight violent tornadoes across the Southern United States, causing 209 fatalities—50 of which occurred in a single tornado in Arkansas.[1] In addition, this tornado outbreak is the deadliest on record to ever affect the state of Tennessee, with 66 of the fatalities associated with this outbreak occurring in the state; this surpasses the 60 fatalities from a tornado outbreak in 1909, and in terms of fatalities is well ahead of both the 1974 Super Outbreak and the Super Tuesday tornado outbreak, each of which generated 45 and 31 fatalities, respectively. The severe weather event also resulted in the fourth-largest number of tornado fatalities within a 24-hour period since 1950.[2] To date this was considered the most destructive tornado outbreak in Arkansas on record.[3][nb 1]

Quick Facts Tornadoes, Maximum rating ...

Background

A large low pressure system raced across the Northern Pacific before reaching the coast of the Southern Alaska Panhandle on March 17. A new low formed from the original one and moved quickly southeastward through Canada and the Great Plains before turning eastward over Northern Oklahoma during the afternoon of March 19. It subsequently moved into Southwestern Missouri near Joplin and shot northeastward as another low that had formed in Nevada on March 19 surged into the region on March 21 and made a gradual northeastward turn through North Texas, Southeastern Oklahoma, and Northwestern Arkansas before turning northward on March 22 after it entered Illinois. Favorable conditions in the atmosphere led to a massive area of strong and severe thunderstorms that produced damaging winds, large hail, heavy rain, flooding, lightning, and tornadoes.[5]

Outbreak statistics

More information Date, Total ...

Confirmed tornadoes

More information FU, F0 ...

Prior to 1990, there is a likely undercount of tornadoes, particularly E/F0–1, with reports of weaker tornadoes becoming more common as population increased. A sharp increase in the annual average E/F0–1 count by approximately 200 tornadoes was noted upon the implementation of NEXRAD Doppler weather radar in 1990–1991.[14][nb 5] 1974 marked the first year where significant tornado (E/F2+) counts became homogenous with contemporary values, attributed to the consistent implementation of Fujita scale assessments.[18][nb 3] Numerous discrepancies on the details of tornadoes in this outbreak exist between sources. The total count of tornadoes and ratings differs from various agencies accordingly. The list below documents information from the most contemporary official sources alongside assessments from tornado historian Thomas P. Grazulis.

More information Color / symbol, Description ...

More information F#, Location ...

Non-tornadic effects

The weather system associated with the outbreak also produced several inches of snow across the central and northern Great Plains and the upper Midwest. Blizzard conditions affected Kansas, Nebraska, and South Dakota. A significant blizzard affected the Great Plains. In Kansas, 15 in (38 cm) of snow were recorded. On March 22, Charles City, Iowa, documented 11.6 in (29 cm), which was the town's greatest 24-hour snowfall record at the time. Minnesota reported 17 in (43 cm), while Bergland, Michigan, reported 2 ft (0.61 m) of snowfall. Heavy snow and strong winds disrupted highways and road traffic. Flash floods also affected Sumner and Clay counties, Tennessee.[5]

See also

Notes

  1. An outbreak is generally defined as a group of at least six tornadoes (the number sometimes varies slightly according to local climatology) with no more than a six-hour gap between individual tornadoes. An outbreak sequence, prior to (after) the start of modern records in 1950, is defined as a period of no more than two (one) consecutive days without at least one significant (F2 or stronger) tornado.[4]
  2. All dates are based on the local time zone where the tornado touched down; however, all times are in Coordinated Universal Time and dates are split at midnight CST/CDT for consistency.
  3. The Fujita scale was devised under the aegis of scientist T. Theodore Fujita in the early 1970s. Prior to the advent of the scale in 1971, tornadoes in the United States were officially unrated.[6][7] Tornado ratings were retroactively applied to events prior to the formal adoption of the F-scale by the National Weather Service.[8] While the Fujita scale has been superseded by the Enhanced Fujita scale in the U.S. since February 1, 2007,[9] Canada used the old scale until April 1, 2013;[10] nations elsewhere, like the United Kingdom, apply other classifications such as the TORRO scale.[11]
  4. The National Oceanic and Atmospheric Administration's Storm Data publication does not list exact damage totals for every event, instead giving damage categories. As such, damage for individual tornadoes is not comprehensive.[12][13][5]
  5. Historically, the number of tornadoes globally and in the United States was and is likely underrepresented: research by Grazulis on annual tornado activity suggests that, as of 2001, only 53% of yearly U.S. tornadoes were officially recorded. Documentation of tornadoes outside the United States was historically less exhaustive, owing to the lack of monitors in many nations and, in some cases, to internal political controls on public information.[15] Most countries only recorded tornadoes that produced severe damage or loss of life.[16] Significant low biases in U.S. tornado counts likely occurred through the early 1990s, when advanced NEXRAD was first installed and the National Weather Service began comprehensively verifying tornado occurrences.[17]
  6. All starting coordinates are based on the NCEI database and may not reflect contemporary analyses
  7. The listed width values are primarily the average/mean width of the tornadoes, with those having known maximum widths denoted by ♯. From 1952 to 1994, reports largely list mean width whereas contemporary years list maximum width.[19] Values provided by Grazulis are the average width, with estimates being rounded down (i.e. 0.5 mi (0.80 km) is rounded down from 880 yards to 800 yards.[20][21]

References

  1. Grazulis 1993, pp. 37, 962–3.
  2. Evans, Jeffry S.; Mead, Corey M.; Weiss, Steven J. (2008). Written at Norman, Oklahoma. Forecasting the Super Tuesday tornado outbreak at the Storm Prediction Center: Why forecast uncertainty does not necessarily decrease as you get closer to a high impact weather event (PDF). 24th Conference on Severe Local Storms (27–31 October 2008). Savannah, Georgia: American Meteorological Society. Archived (PDF) from the original on 26 November 2018. Retrieved 2 December 2019.
  3. Schneider, Russell S.; Brooks, Harold E.; Schaefer, Joseph T. (2004). Tornado Outbreak Day Sequences: Historic Events and Climatology (1875–2003) (PDF). 22nd Conf. Severe Local Storms. Hyannis, Massachusetts: American Meteorological Society. Retrieved September 17, 2019.
  4. Edwards et al. 2013, p. 641–642.
  5. Edwards, Roger (March 5, 2015). "Enhanced F Scale for Tornado Damage". The Online Tornado FAQ (by Roger Edwards, SPC). Storm Prediction Center. Retrieved February 25, 2016.
  6. "Enhanced Fujita Scale (EF-Scale)". Environment and Climate Change Canada. Environment and Climate Change Canada. June 6, 2013. Archived from the original on March 3, 2016. Retrieved February 25, 2016.
  7. "The International Tornado Intensity Scale". Tornado and Storm Research Organisation. Tornado and Storm Research Organisation. 2016. Archived from the original on March 5, 2016. Retrieved February 25, 2016.
  8. Grazulis 1993, pp. 962–3.
  9. Edwards, Roger (March 5, 2015). "The Online Tornado FAQ (by Roger Edwards, SPC)". Storm Prediction Center: Frequently Asked Questions about Tornadoes. Storm Prediction Center. Retrieved February 25, 2016.
  10. Agee and Childs 2014, pp. 1497, 1503.
  11. Brooks 2004, p. 310.
  12. USWB 1952, p. 71.
  13. USWB 1952, p. 72.
  14. Grazulis, Thomas P.; Grazulis, Doris (26 April 2000). "The Most "Important" US Tornadoes by State". St. Johnsbury, Vermont: The Tornado Project of Environmental Films. Archived from the original on 4 March 2016. Retrieved 22 May 2019.
  15. Grazulis, Thomas P.; Grazulis, Doris (2013). "Tornado Index # 19520321.5.14". The Tornado History Project. St. Johnsbury, Vermont: The Tornado Project of Environmental Films. Archived from the original on 4 July 2013. Retrieved 28 November 2023.
  16. "Severe Weather Database Files (1950-2021)". Storm Prediction Center Maps, Graphics, and Data Page. Norman, Oklahoma: Storm Prediction Center. July 11, 2021. Retrieved 24 February 2022.
  17. USWB 1952, p. 73.
  18. USWB 1952, pp. 73–4.
  19. USWB 1952, p. 74.

Sources


Share this article:

This article uses material from the Wikipedia article Tornado_outbreak_of_March_21–22,_1952, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.