Prokineticin_receptor_2

Prokineticin receptor 2

Prokineticin receptor 2

Protein-coding gene in the species Homo sapiens


Prokineticin receptor 2 (PKR2), is a dimeric[5] G protein-coupled receptor encoded by the PROKR2 gene in humans.[6]

Quick Facts PROKR2, Identifiers ...

Function

Prokineticins are secreted proteins that can promote angiogenesis and induce strong gastrointestinal smooth muscle contraction. The protein encoded by this gene is an integral membrane protein and G protein-coupled receptor for prokineticins. PKR2 is composed of 384 amino acids. Asparagine residues at position 7 and 27 undergo N-linked glycosylation.[5] Cysteine residues at position 128 and 208 form a disulfide bond.[5] The encoded protein is similar in sequence to GPR73, another G protein-coupled receptor for prokineticins.[6] PKR2 is also linked to mammalian circadian rhythm.[7] Levels of PKR2 mRNA fluctuate in the suprachiasmatic nucleus, increasing during the day and decreasing at night.[7]

Mutations in the PROKR2 (also known as KAL3) gene have been implicated in hypogonadotropic hypogonadism and gynecomastia.[8] Total loss of PKR2 in mice leads to spontaneous torpor usually beginning at dusk and lasting for 8 hours on average.[9]

PKR2 functions as a G protein-coupled receptor, thus it has a signaling cascade when it's ligand binds. PKR2 is a Gq-coupled protein, so when the ligand binds, beta-type phospholipase C is activated which creates inositol triphosphate. This then triggers calcium release inside the cell.[10]

See also


References

  1. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  2. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. Sposini S, Caltabiano G, Hanyaloglu AC, Miele R (January 2015). "Identification of transmembrane domains that regulate spatial arrangements and activity of prokineticin receptor 2 dimers". Molecular and Cellular Endocrinology. 399: 362–372. doi:10.1016/j.mce.2014.10.024. hdl:10044/1/31246. PMID 25449422. S2CID 13491537.
  4. Masumoto KH, Nagano M, Takashima N, Hayasaka N, Hiyama H, Matsumoto S, et al. (June 2006). "Distinct localization of prokineticin 2 and prokineticin receptor 2 mRNAs in the rat suprachiasmatic nucleus". The European Journal of Neuroscience. 23 (11): 2959–2970. doi:10.1111/j.1460-9568.2006.04834.x. PMID 16819985. S2CID 20510543.
  5. Narula HS, Carlson HE (November 2014). "Gynaecomastia--pathophysiology, diagnosis and treatment". Nature Reviews. Endocrinology. 10 (11): 684–698. doi:10.1038/nrendo.2014.139. PMID 25112235. S2CID 40159424.
  6. Jethwa PH, I'Anson H, Warner A, Prosser HM, Hastings MH, Maywood ES, Ebling FJ (June 2008). "Loss of prokineticin receptor 2 signaling predisposes mice to torpor". American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 294 (6): R1968–R1979. doi:10.1152/ajpregu.00778.2007. PMC 2735815. PMID 18417646.
  7. Martin C, Balasubramanian R, Dwyer AA, Au MG, Sidis Y, Kaiser UB, et al. (April 2011). "The role of the prokineticin 2 pathway in human reproduction: evidence from the study of human and murine gene mutations". Endocrine Reviews. 32 (2): 225–246. doi:10.1210/er.2010-0007. PMC 3365793. PMID 21037178.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.


Share this article:

This article uses material from the Wikipedia article Prokineticin_receptor_2, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.