Phycobiliprotein

Phycobiliprotein

Phycobiliprotein

Add article description


Phycobiliproteins are water-soluble proteins present in cyanobacteria and certain algae (rhodophytes, cryptomonads, glaucocystophytes). They capture light energy, which is then passed on to chlorophylls during photosynthesis. Phycobiliproteins are formed of a complex between proteins and covalently bound phycobilins that act as chromophores (the light-capturing part). They are most important constituents of the phycobilisomes.

Phycobilisome structure

Major phycobiliproteins

More information MW (kDa), Ex (nm) / Em (nm) ...

Characteristics

Phycobiliproteins demonstrate superior fluorescent properties compared to small organic fluorophores, especially when high sensitivity or multicolor detection required :

  • Broad and high absorption of light suits many light sources
  • Very intense emission of light: 10-20 times brighter than small organic fluorophores
  • Relative large Stokes shift gives low background, and allows multicolor detections.
  • Excitation and emission spectra do not overlap compared to conventional organic dyes.
  • Can be used in tandem (simultaneous use by FRET) with conventional chromophores (i.e. PE and FITC, or APC and SR101 with the same light source).
  • Longer fluorescence retention period.
  • High water solubility

Applications

Phycobiliproteins allow very high detection sensitivity, and can be used in various fluorescence based techniques fluorimetric microplate assays Archived 2018-03-18 at the Wayback Machine,[6][7][8] FISH and multicolor detection.

They are under development for use in artificial photosynthesis, limited by the relatively low conversion efficiency of 4-5%.[9]


References

  1. Contreras-Martel, C.; Legrand, P.; Piras, C.; Vernede, X.; et al. (2000-05-09). "Crystal structure of R-phycoerythrin at 2.2 angstroms". RCSB Protein Data Bank (PDB). doi:10.2210/pdb1eyx/pdb. PDB ID: 1EYX. Retrieved 11 October 2012. {{cite journal}}: Cite journal requires |journal= (help)
  2. Contreras-Martel C, Martinez-Oyanedel J, Bunster M, Legrand P, Piras C, Vernede X, Fontecilla-Camps JC (January 2001). "Crystallization and 2.2 A resolution structure of R-phycoerythrin from Gracilaria chilensis: a case of perfect hemihedral twinning". Acta Crystallographica D. 57 (Pt 1): 52–60. doi:10.1107/S0907444900015274. PMID 11134927. S2CID 216930. PDB ID: 1EYX.
  3. Image created with RasTop (Molecular Visualization Software).
  4. Camara-Artigas, A. (2011-12-16). "Crystal Structure of the B-phycoerythrin from the red algae Porphyridium cruentum at pH8". RCSB Protein Data Bank (PDB). doi:10.2210/pdb3v57/pdb. PDB ID: 3V57. Retrieved 12 October 2012. {{cite journal}}: Cite journal requires |journal= (help)
  5. Camara-Artigas A, Bacarizo J, Andujar-Sanchez M, Ortiz-Salmeron E, Mesa-Valle C, Cuadri C, Martin-Garcia JM, Martinez-Rodriguez S, Mazzuca-Sobczuk T, Ibañez MJ, Allen JP (October 2012). "pH-dependent structural conformations of B-phycoerythrin from Porphyridium cruentum". The FEBS Journal. 279 (19): 3680–3691. doi:10.1111/j.1742-4658.2012.08730.x. PMID 22863205. S2CID 31253970. PDB ID: 3V57.
  6. "Flow Cytometry" (PDF). Archived from the original (PDF) on 2018-03-18. Retrieved 2014-06-07.
  7. Telford, William G; Moss, Mark W; Morseman, John P; Allnutt, F.C.Thomas (August 2001). "Cyanobacterial stabilized phycobilisomes as fluorochromes for extracellular antigen detection by flow cytometry". Journal of Immunological Methods. 254 (1–2): 13–30. doi:10.1016/s0022-1759(01)00367-2. ISSN 0022-1759. PMID 11406150.
  8. Lavars, Nick (2021-10-19). "Encasing algae triples the efficiency of artificial photosynthesis". New Atlas. Retrieved 2021-10-24.

Share this article:

This article uses material from the Wikipedia article Phycobiliprotein, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.