Omega_hydroxy_acid

Omega hydroxy acid

Omega hydroxy acid

Add article description


Omega hydroxy acids (ω-hydroxy acids) are a class of naturally occurring straight-chain aliphatic organic acids n carbon atoms long with a carboxyl group at position 1 (the starting point for the family of carboxylic acids), and a hydroxyl at terminal position n where n > 3. They are a subclass of hydroxycarboxylic acids. The C16 and C18 omega hydroxy acids 16-hydroxy palmitic acid and 18-hydroxy stearic acid are key monomers of cutin in the plant cuticle.[1][2] The polymer cutin is formed by interesterification of omega hydroxy acids and derivatives of them that are substituted in mid-chain, such as 10,16-dihydroxy palmitic acid.[3][4] Only the epidermal cells of plants synthesize cutin.[5]

Omega hydroxy fatty acids also occur in animals. Cytochrome P450 (CYP450) microsome ω-hydroxylases such as CYP4A11, CYP4A22, CYP4F2, and CYP4F3 in humans, Cyp4a10 and Cyp4a12 in mice, and Cyp4a1, Cyp4a2, Cyp4a3, and Cyp4a8 in rats metabolize arachidonic acid and many arachidonic acid metabolites to their corresponding omega hydroxyl products.[6] This metabolism of arachidonic acid produces 20-hydroxyarachidonic acid (i.e. 20-hydroxyeicosatetraeonic acid or 20-HETE), a bioactive product involved in various physiological and pathological processes;[7] and this metabolism of certain bioactive arachidonic acid metabolites such as leukotriene B4 and 5-hydroxyicosatetraenoic acid produces 20-hydroxylated products which are 100- to 1,000-fold weaker than, and therefore represents the inactivation of, their respective precursors.[8][9][10]

List

The definition for "omega" includes number of carbons (C#) greater or equal to three. Lower numbers are included here to match the formula pattern CnH2nO3.

More information C#, systematic name ...

See also


References

  1. Kolattukudy, P. E.; Walton, T. J. (1972). "Structure and biosynthesis of the hydroxy fatty acids of cutin in Vicia faba leaves". Biochemistry. 11 (10): 1897–1907. doi:10.1021/bi00760a026. PMID 5025632.
  2. T.J. Walton TJ and P.E. Kolattukudy (1972) Enzymatic conversion of 16-hydroxypalmitic acid into 10,16-dihydroxypalmitic acid in Vicia faba epidermal extracts. Biochem Biophys Res Communications 46, (1), 16–21
  3. P. J. Holloway (1982) The chemical constitution of plant cutins. p45-85 in In "The Plant Cuticle". ed. by DF Cutler, KL Alvin and CE Price. Academic Press, London. ISBN 0-12-199920-3
  4. Kolattukudy, PE (1996) Biosynthetic pathways of cutin and waxes, and their sensitivity to environmental stresses. In: Plant Cuticles. Ed. by G. Kerstiens, BIOS Scientific publishers, Oxford, pp 83-108
  5. Hoopes SL, Garcia V, Edin ML, Schwartzman ML, Zeldin DC (Jul 2015). "Vascular actions of 20-HETE". Prostaglandins & Other Lipid Mediators. 120: 9–16. doi:10.1016/j.prostaglandins.2015.03.002. PMC 4575602. PMID 25813407.
  6. Annu Rev Pharmacol Toxicol. 2005;45:413-38
  7. Du, L; Yin, H; Morrow, JD; Strobel, HW; Keeney, DS (2009). "20-Hydroxylation is the CYP-dependent and retinoid-inducible leukotriene B4 inactivation pathway in human and mouse skin cells". Archives of Biochemistry and Biophysics. 484 (1): 80–86. doi:10.1016/j.abb.2009.01.012. PMC 2687325. PMID 19467632.
  8. J Immunol. 1986 Nov 15;137(10):3277-83
  9. Lycan, W. H.; Adams, Roger (February 1929). "Omega-Hydroxy Aliphatic Acids. Synthesis of Sabinic Acid". Journal of the American Chemical Society. 51 (2): 625–629. doi:10.1021/ja01377a042. ISSN 0002-7863.

Share this article:

This article uses material from the Wikipedia article Omega_hydroxy_acid, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.