Negro_de_Chorrillos

Negro de Chorrillos

Negro de Chorrillos

Volcano in the Andes


24.2715°S 66.4148°W / -24.2715; -66.4148[1] Negro de Chorrillos is a volcano in the Andes.

Negro de Chorrillos - sometimes also known as Cerro Chorrillos or Cerro Negro de Chorrillos -[2] lies on the Puna, a high plateau in the Andes. Numerous volcanoes of the Central Volcanic Zone of the Andes, including calderas, monogenetic volcanoes and polygenetic volcanoes, rise on this plateau.[3] Most of the volcanoes there are back-arc volcanoes with only a few stratovolcanoes such as Tunupa, Cerro Tuzgle and Uturuncu[4] the second of which is close to Negro de Chorrillos. The major Calama-Olacapato-El Toro fault lie nearby, as do active and inactive hot springs.[5] This major fault zone is accompanied by a chain of volcanic systems;[6] in general, volcanism in the region has been influenced by large fault systems.[4] The basement in the region is formed by Precambrian-Cambrian units with Cretaceous-Oligocene sediments[7] and ignimbrites from the Aguas Calientes caldera.[8]

Negro de Chorrillos covers a surface of about 5.88 square kilometres (2.27 sq mi)[9] and features a scoria cone.[1] It has erupted lava flows of the aa lava and block lava type, which flowed 4 kilometres (2.5 mi) down a valley. Ash fall, lava bombs and scoria are also found.[10] Both Negro de Chorrillos and neighbouring San Jerónimo centres have heights of 300–450 metres (980–1,480 ft) and widths of 750–950 metres (2,460–3,120 ft).[8] The volume of both centres is less than 0.1 cubic kilometres (0.024 cu mi).[11] Negro de Chorrillos may be the source of local pyroclastic flows, and material eroded from such flows.[12]

The Negro de Chorrillos monogenetic volcano formed during the Pleistocene. Together with neighbouring San Geronimo volcano it lies on a left-trending strike-slip fault,[13] the El Toro fault.[14] Nearby faults include the Incachule fault to the south and the Chorrillos fault to the north, which actually crosses the Negro de Chorrillos centre.[15] Both faults are part of the Calama-Olacapato-El Toro fault.[10] An onset of crustal tension probably facilitated the ascent of magma.[8]

Negro de Chorrillos like San Geronimo has erupted basaltic trachyandesite to trachyandesite,[16] both shoshonite magmas.[14] The eruption that gave rise to Negro de Chorrillos took place in several stages that produced magmas of different composition.[1] They formed over the volcanic back-arc of the Peru-Chile Trench; low percentage melts that were contaminated with lithospheric material formed these two centres.[17]

Eruption dates from the volcano are contradictory; radiometric dates range from 200,000 ± 150,000 years ago,[12] 450,000 years ago,[13] 200,000 ± 80,000 years ago[10] and - the most recent dating effort - 51,000 ± 2,000 years ago according to potassium-argon dating.[18] Lava flows from Negro de Chorrillos were later cut by fault offset.[19]


References

  1. Schreiber, U.; Schwab, K. (1991). "Geochemistry of quaternary shoshonitic lavas related to the Calama-Olacapato-El Toro Lineament, NW Argentina". Journal of South American Earth Sciences. 4 (1–2): 74. doi:10.1016/0895-9811(91)90019-h.
  2. Seggiaro, Raúl Eudocio; Guzman, Silvina; Pereyra, Ricardo; Coppolecchia, Mariana; Cegarra, Marcelo (2016-12-30). "NEOTECTÓNICA Y VOLCANISMO MONOGENÉTICO CUATERNARIO SOBRE EL SEGMENTO CENTRAL DEL LINEAMIENTO CALAMA OLACAPATO TORO (COT)". Revista de la Asociación Geológica Argentina (in Spanish). 73 (4): 475. ISSN 1851-8249.
  3. Lanza, F.; Tibaldi, A.; Bonali, F. L.; Corazzato, C. (2013-05-08). "Space–time variations of stresses in the Miocene–Quaternary along the Calama–Olacapato–El Toro Fault Zone, Central Andes". Tectonophysics. 593: 33–56. doi:10.1016/j.tecto.2013.02.029.

Sources


Share this article:

This article uses material from the Wikipedia article Negro_de_Chorrillos, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.