Multi-messenger_astronomy

Multi-messenger astronomy

Multi-messenger astronomy

Observational astronomy technique


Multi-messenger astronomy is astronomy based on the coordinated observation and interpretation of signals carried by disparate "messengers": electromagnetic radiation, gravitational waves, neutrinos, and cosmic rays. They are created by different astrophysical processes, and thus reveal different information about their sources.

The main multi-messenger sources outside the heliosphere are expected to be compact binary pairs (black holes and neutron stars), supernovae, irregular neutron stars, gamma-ray bursts, active galactic nuclei, and relativistic jets.[1][2][3] The table below lists several types of events and expected messengers.

Detection from one messenger and non-detection from a different messenger can also be informative.[4]

More information Event type, Electromagnetic ...

Networks

The Supernova Early Warning System (SNEWS), established in 1999 at Brookhaven National Laboratory and automated since 2005, combines multiple neutrino detectors to generate supernova alerts. (See also neutrino astronomy).

The Astrophysical Multimessenger Observatory Network (AMON),[12] created in 2013,[13] is a broader and more ambitious project to facilitate the sharing of preliminary observations and to encourage the search for "sub-threshold" events which are not perceptible to any single instrument. It is based at Pennsylvania State University.

Milestones

  • 1940s: Some cosmic rays are identified as forming in solar flares.[5]
  • 1987: Supernova SN 1987A emitted neutrinos that were detected at the Kamiokande-II, IMB and Baksan neutrino observatories, a couple of hours before the supernova light was detected with optical telescopes.
  • August 2017: A neutron star collision in the galaxy NGC 4993 produced the gravitational wave signal GW170817, which was observed by the LIGO/Virgo collaboration. After 1.7 seconds, it was observed as the gamma ray burst GRB 170817A by the Fermi Gamma-ray Space Telescope and INTEGRAL, and its optical counterpart SSS17a was detected 11 hours later at the Las Campanas Observatory, then by the Hubble Space Telescope and the Dark Energy Camera. Ultraviolet observations by the Neil Gehrels Swift Observatory, X-ray observations by the Chandra X-ray Observatory and radio observations by the Karl G. Jansky Very Large Array complemented the detection. This was the first gravitational wave event observed with an electromagnetic counterpart, thereby marking a significant breakthrough for multi-messenger astronomy.[14] Non-observation of neutrinos was attributed to the jets being strongly off-axis.[15] In October 2020, astronomers reported lingering X-ray emission from GW170817/GRB 170817A/SSS17a.[16]
  • September 2017 (announced July 2018): On September 22, the extremely-high-energy[17] (about 290 TeV) neutrino event IceCube-170922A[18] was recorded by the IceCube Collaboration,[19][20] which sent out an alert with coordinates for the possible source. The detection of gamma rays above 100 MeV by the Fermi-LAT Collaboration[21] and between 100 GeV and 400 GeV by the MAGIC Collaboration[22] from the blazar TXS 0506+056 (reported September 28 and October 4, respectively) was deemed positionally consistent with the neutrino signal.[23] The signals can be explained by ultra-high-energy protons accelerated in blazar jets, producing neutral pions (decaying into gamma rays) and charged pions (decaying into neutrinos).[24] This is the first time that a neutrino detector has been used to locate an object in space and a source of cosmic rays has been identified.[23][25][26][27][28]
  • October 2019 (announced February 2021): On October 1, a high energy neutrino was detected at IceCube and follow-up measurements in visible light, ultraviolet, x-rays and radio waves identified the tidal disruption event AT2019dsg as possible source.[10]
  • November 2019 (announced June 2022): A second high energy neutrino detected by IceCube associated with a tidal disruption event AT2019fdr.[29]
  • June 2023: Astronomers used a new cascade neutrino technique[30] to detect, for the first time, the release of neutrinos from the galactic plane of the Milky Way galaxy, creating the first neutrino-based galactic map.[31][32]

References

  1. Bartos, Imre; Kowalski, Marek (2017). Multimessenger Astronomy. IOP Publishing. Bibcode:2017muas.book.....B. doi:10.1088/978-0-7503-1369-8. ISBN 978-0-7503-1369-8.
  2. Franckowiak, Anna (2017). "Multimessenger Astronomy with Neutrinos". Journal of Physics: Conference Series. 888 (12009): 012009. Bibcode:2017JPhCS.888a2009F. doi:10.1088/1742-6596/888/1/012009.
  3. Abadie, J.; et al. (The LIGO Collaboration) (2012). "Implications for the origins of GRB 051103 from the LIGO observations". The Astrophysical Journal. 755 (1): 2. arXiv:1201.4413. Bibcode:2012ApJ...755....2A. doi:10.1088/0004-637X/755/1/2. S2CID 15494223.
  4. Spurio, Maurizio (2015). Particles and Astrophysics: A Multi-Messenger Approach. Astronomy and Astrophysics Library. Springer. p. 46. doi:10.1007/978-3-319-08051-2. ISBN 978-3-319-08050-5.
  5. "No neutrino emission from a binary neutron star merger". 16 October 2017. Retrieved 20 July 2018.
  6. IceCube Collaboration*†; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Alameddine, J. M.; Alispach, C.; Alves, A. A.; Amin, N. M.; Andeen, K.; Anderson, T.; Anton, G.; Argüelles, C. (2022-11-04). "Evidence for neutrino emission from the nearby active galaxy NGC 1068". Science. 378 (6619): 538–543. arXiv:2211.09972. Bibcode:2022Sci...378..538I. doi:10.1126/science.abg3395. hdl:1854/LU-01GSA90WVKWXWD30RYFKKK1XC6. ISSN 0036-8075. PMID 36378962. S2CID 253320297.
  7. Reusch, Simeon; Stein, Robert; Kowalski, Marek; van Velzen, Sjoert; Franckowiak, Anna; Lunardini, Cecilia; Murase, Kohta; Winter, Walter; Miller-Jones, James C. A.; Kasliwal, Mansi M.; Gilfanov, Marat (2022-06-03). "Candidate Tidal Disruption Event AT2019fdr Coincident with a High-Energy Neutrino". Physical Review Letters. 128 (22): 221101. arXiv:2111.09390. Bibcode:2022PhRvL.128v1101R. doi:10.1103/PhysRevLett.128.221101. hdl:20.500.11937/90027. PMID 35714251. S2CID 244345574.
  8. Landau, Elizabeth; Chou, Felicia; Washington, Dewayne; Porter, Molly (16 October 2017). "NASA Missions Catch First Light from a Gravitational-Wave Event". NASA. Retrieved 17 October 2017.
  9. Starr, Michelle (2020-10-12). "Astronomers Detect Eerie Glow Still Radiating From Neutron Star Collision Years Later". ScienceAlert. Retrieved 2023-01-04.
  10. Finkbeiner, A. (2017-09-22). "The New Era of Multimessenger Astronomy". Scientific American. 318 (5): 36–41. doi:10.1038/scientificamerican0518-36. PMID 29672499.
  11. IceCube Collaboration (2018-07-12). "Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert". Science. 361 (6398): 147–151. arXiv:1807.08794. Bibcode:2018Sci...361..147I. doi:10.1126/science.aat2890. PMID 30002248. S2CID 133261745.
  12. Aartsen; et al. (The IceCube Collaboration, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S., INTEGRAL, Kanata, Kiso, Kapteyn, Liverpool Telescope, Subaru, Swift/NuSTAR, VERITAS, VLA/17B-403 teams) (12 July 2018). "Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A". Science. 361 (6398): eaat1378. arXiv:1807.08816. Bibcode:2018Sci...361.1378I. doi:10.1126/science.aat1378. PMID 30002226. S2CID 49734791.
  13. De Angelis, Alessandro; Pimenta, Mario (2018). Introduction to particle and astroparticle physics (multimessenger astronomy and its particle physics foundations). Springer. doi:10.1007/978-3-319-78181-5. ISBN 978-3-319-78181-5.
  14. Aartsen; et al. (IceCube Collaboration) (12 July 2018). "Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert". Science. 361 (6398): 147–151. arXiv:1807.08794. Bibcode:2018Sci...361..147I. doi:10.1126/science.aat2890. PMID 30002248. S2CID 133261745.
  15. "Neutrino that struck Antarctica traced to galaxy 3.7bn light years away". The Guardian. July 12, 2018. Retrieved July 12, 2018.
  16. "Source of cosmic 'ghost' particle revealed". BBC. July 12, 2018. Retrieved 12 July 2018.
  17. Wright, Katherine (2023). "Milky Way Viewed through Neutrinos". Physics. 16. Physics 16, 115 (29 June 2023): 115. doi:10.1103/Physics.16.115. Retrieved 1 July 2023. Kurahashi Neilson first came up with the idea to use cascade neutrinos to map the Milky Way in 2015.
  18. IceCube Collaboration (29 June 2023). "Observation of high-energy neutrinos from the Galactic plane". Science. 380 (6652): 1338–1343. arXiv:2307.04427. doi:10.1126/science.adc9818. Archived from the original on 30 June 2023. Retrieved 30 June 2023.

Share this article:

This article uses material from the Wikipedia article Multi-messenger_astronomy, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.