HD_168443

HD 168443

HD 168443

Star in the constellation Serpens


HD 168443 is an ordinary yellow-hued star in the Serpens Cauda segment of the equatorial constellation of Serpens. It is known to have two substellar companions. With an apparent visual magnitude of 6.92,[2] the star lies just below the nominal lower brightness limit of visibility to the normal human eye. This system is located at a distance of 127 light years from the Sun based on parallax,[1] but is drifting closer with a radial velocity of −48.7 km/s.[2]

Quick Facts Observation data Epoch J2000.0 Equinox J2000.0, Constellation ...

This stellar object is a core hydrogen fusing G-type main-sequence star with a classification of G6V, although it is likely evolved[4] with an age of around 11 billion years.[2] It is slightly lower in mass than the Sun but has a radius that is larger by 51%. The star is spinning with a leisurely projected rotational velocity of 2.2 km/s[4] and it has a very inactive chromosphere.[3][4] It is radiating 2.4[5] times the luminosity of the Sun from its photosphere at an effective temperature of 5,491 K.[4]

Planetary system

HD 168443 is known to be orbited by a super-Jupiter exoplanet, discovered in 1999, and a brown dwarf, discovered in 2001. The brown dwarf takes 30 times longer to orbit the star than the planet.[7][8][9] Both have eccentric orbits.[4] An orbital fit to Hipparcos astrometric data suggested the brown dwarf has a mass of 34±12 MJ.[9] A 2022 study utilizing both Hipparcos and Gaia data instead measured a true mass of 17.3 MJ for HD 168443 c, close to the minimum mass.[10] Test simulations of massless particles orbiting in between these two bodies show that all such objects are quickly ejected within two million years. That suggests any other planetary companions would be orbiting further out from the star.[11]

More information Companion (in order from star), Mass ...

See also


References

  1. Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. S2CID 244398875. Gaia DR3 record for this source at VizieR.
  2. Anderson, E.; Francis, Ch. (2012). "XHIP: An extended hipparcos compilation". Astronomy Letters. 38 (5): 331. arXiv:1108.4971. Bibcode:2012AstL...38..331A. doi:10.1134/S1063773712050015. S2CID 119257644.
  3. Gray, R. O.; et al. (July 2006), "Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 pc-The Southern Sample", The Astronomical Journal, 132 (1): 161–170, arXiv:astro-ph/0603770, Bibcode:2006AJ....132..161G, doi:10.1086/504637, S2CID 119476992
  4. Pilyavsky, Genady; et al. (December 2011). "A Search for the Transit of HD 168443b: Improved Orbital Parameters and Photometry". The Astrophysical Journal. 743 (2): 8. arXiv:1109.5166. Bibcode:2011ApJ...743..162P. doi:10.1088/0004-637X/743/2/162. S2CID 13190486. 162.
  5. Marcy, Geoffrey W.; et al. (1999). "Two New Planets in Eccentric Orbits". The Astrophysical Journal. 520 (1): 239–247. arXiv:astro-ph/9904275. Bibcode:1999ApJ...520..239M. doi:10.1086/307451. S2CID 16827678.
  6. Marcy, Geoffrey W.; et al. (2001). "Two Substellar Companions Orbiting HD 168443". The Astrophysical Journal. 555 (1): 418–425. Bibcode:2001ApJ...555..418M. doi:10.1086/321445.
  7. Barnes, Rory; Raymond, Sean N. (December 2004). "Predicting Planets in Known Extrasolar Planetary Systems. I. Test Particle Simulations". The Astrophysical Journal. 617 (1): 569–574. arXiv:astro-ph/0402542. Bibcode:2004ApJ...617..569B. doi:10.1086/423419. S2CID 12380925.

Share this article:

This article uses material from the Wikipedia article HD_168443, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.