Chlorophyllide_a_reductase

Chlorophyllide a reductase

Chlorophyllide a reductase

Enzyme


Chlorophyllide a reductase (EC 1.3.7.15), also known as COR, is an enzyme with systematic name bacteriochlorophyllide-a:ferredoxin 7,8-oxidoreductase.[1][2] It catalyses the following chemical reaction

chlorophyllide a + 2 reduced ferredoxin + ATP + H2O + 2 H+ 3-deacetyl 3-vinylbacteriochlorophyllide a + 2 oxidized ferredoxin + ADP + phosphate

This reduction (with trans stereochemistry) of the pyrrole ring B, gives the characteristic 18-electron aromatic system that distinguishes bacteriochlorophylls from chlorophylls, which retain the chlorin system of Chlorophyllide a. This enzyme is present in purple bacteria such as Rhodobacter capsulatus and Rhodobacter sphaeroides, and Pseudomonadota. It is a component of the biosynthetic pathway to bacteriochlorophylls.[3][4][5]

See also


References

  1. Harada, Jiro; Mizoguchi, Tadashi; Tsukatani, Yusuke; Yokono, Makio; Tanaka, Ayumi; Tamiaki, Hitoshi (2014). "Chlorophyllide a Oxidoreductase Works as One of the Divinyl Reductases Specifically Involved in Bacteriochlorophyll a Biosynthesis". Journal of Biological Chemistry. 289 (18): 12716–12726. doi:10.1074/jbc.M113.546739. PMC 4007461. PMID 24637023.
  2. R. Caspi (2015-12-08). "Pathway: bacteriochlorophyll a biosynthesis". MetaCyc Metabolic Pathway Database. Retrieved 2020-06-04.
  3. Willows RD (June 2003). "Biosynthesis of chlorophylls from protoporphyrin IX". Natural Product Reports. 20 (3): 327–41. doi:10.1039/B110549N. PMID 12828371.
  4. Bollivar DW (November 2006). "Recent advances in chlorophyll biosynthesis". Photosynthesis Research. 90 (2): 173–94. doi:10.1007/s11120-006-9076-6. PMID 17370354. S2CID 23808539.



Share this article:

This article uses material from the Wikipedia article Chlorophyllide_a_reductase, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.