Cerulenin

Cerulenin

Cerulenin

Chemical compound


Cerulenin is an antifungal antibiotic that inhibits fatty acid and steroid biosynthesis. It was the first natural product antibiotic known to inhibit lipid synthesis.[1] In fatty acid synthesis, it has been reported to bind in equimolar ratio to b-keto-acyl-ACP synthase, one of the seven moieties of fatty acid synthase, blocking the interaction of malonyl-CoA. It also has the related activity of stimulating fatty acid oxidation through the activation of CPT1, another enzyme normally inhibited by malonyl-CoA. Inhibition involves covalent thioacylation that permanently inactivates the enzymes.[2] These two behaviors may increase the availability of energy in the form of ATP, perhaps sensed by AMPK, in the hypothalamus.[3]

Quick Facts Names, Identifiers ...

In sterol synthesis, cerulenin inhibits HMG-CoA synthetase activity.[4] It was also reported that cerulenin specifically inhibited fatty acid biosynthesis in Saccharomyces cerevisiae without having an effect on sterol formation.[4] But in general conclusion, cerulenin has inhibitory effects on sterol synthesis.[citation needed]

Cerulenin causes a dose-dependent decrease in HER2/neu protein levels in breast cancer cells, from 14% at 1.25 to 78% at 10 milligrams per liter, and targeting of fatty acid synthase by related drugs has been suggested as a possible treatment.[5] Antiproliferative and pro-apoptotic effects have been shown in colon cells as well.[6] At an intraperitoneal dose of 30 milligrams per kilogram, it has been shown to inhibit feeding and induce dramatic weight loss in mice by a mechanism similar to, but independent or downstream of, leptin signaling.[7] It is found naturally in the industrial strain Cephalosporium caerulens (Sarocladium oryzae, the sheath rot pathogen of rice).[citation needed]

See also


References

  1. Volpe, J J; Vagelos, P R (1976). "Mechanisms and regulation of biosynthesis of saturated fatty acids". Physiological Reviews. 56 (2). American Physiological Society: 339–417. doi:10.1152/physrev.1976.56.2.339. ISSN 0031-9333. PMID 6981.
  2. Straub SG, Yajima H, Komatsu M, Aizawa T, Sharp GW (February 2002). "The effects of cerulenin, an inhibitor of protein acylation, on the two phases of glucose-stimulated insulin secretion". Diabetes. 51 Suppl 1 (90001): S91–5. doi:10.2337/diabetes.51.2007.S91. PMID 11815464.
  3. Reviewed in Ronnett GV, Kleman AM, Kim EK, Landree LE, Tu Y (August 2006). "Fatty acid metabolism, the central nervous system, and feeding". Obesity (Silver Spring). 14 (Suppl 5): 201S–207S. doi:10.1038/oby.2006.309. PMID 17021367.
  4. Ohno T, Awaya J, Kesado T, Nomura S, Omura S (October 1974). "Mechanism of Action of CM-55, a Synthetic Analogue of the Antilipogenic Antibiotic Cerulenin". Antimicrob. Agents Chemother. 6 (4): 387–92. doi:10.1128/aac.6.4.387. PMC 444657. PMID 4157441.
  5. Huang P, Zhu S, Lu S, Dai Z, Jin Y (April 2000). "[An experimental study on cerulenin induced apoptosis of human colonic cancer cells]". Zhonghua Bing Li Xue Za Zhi (in Chinese). 29 (2): 115–8. PMID 11866903.

Share this article:

This article uses material from the Wikipedia article Cerulenin, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.