Aluminium_ethoxide

Aluminium ethoxide

Aluminium ethoxide

Chemical compound


Aluminium triethoxide (also aluminium ethoxide) is an metallo-organic compound with the empirical formula Al(OCH2CH3)3. It is a moisture-sensitive white powder.[2]

Quick Facts Names, Identifiers ...

Properties

Structure of aluminium isopropoxide indicates the tendency of aluminium alkoxides to form aggregates.

Aluminium triethoxide is slightly soluble in hot dimethyl benzene, chlorobenzene and other high boiling point non-polar solvents.[3] It hydrolyzes to aluminium hydroxide and ethanol:

Al(OEt)3 + 3 H2O → Al(OH)3 + 3 EtOH

Although the structure of aluminium triethoxide has not been established by X-ray crystallography, the related aluminium isopropoxide has a tetrameric structure as verified by NMR spectroscopy and X-ray crystallography. The species is described by the formula Al[(μ-O-i-Pr)2Al(O-i-Pr)2]3.[4][5] The unique central Al is octahedral, and three other Al centers adopt tetrahedral geometry. A

Applications

Aluminium triethoxide is used as a reducing agent for aldehydes and ketones, and is also used as a polymerization catalyst. Aluminium triethoxide is mainly used in Sol-Gel Process preparation of high purity aluminium sesquioxide, which is a polymerization agent. At the same time, it is used as a reducing reagent, for example, carbonyl compounds that restore to alcohol.[clarification needed]

Synthesis

Aluminium triethoxide is produced by treating aluminium with anhydrous alcohol. The aluminium is often activated with iodine or by amalgamation to accelerate the reaction.[6][2]

Aluminium triethoxide has been evaluated as a catalyst for the synthesis of esters and carbonates.[7]


References

  1. "Aluminum Ethoxide". American Elements. Retrieved 2019-07-15.
  2. H. J. Becher (1963). "Aluminum Ethoxide". In G. Brauer (ed.). Handbook of Preparative Inorganic Chemistry, 2nd Ed. Vol. 1. NY, NY: Academic Press. p. 834.
  3. Folting, K.; Streib, W. E.; Caulton, K. G.; Poncelet, O.; Hubert-Pfalzgraf, L. G. (1991). "Characterization of aluminum isopropoxide and aluminosiloxanes". Polyhedron. 10 (14): 1639–46. doi:10.1016/S0277-5387(00)83775-4.
  4. Turova, N. Y.; Kozunov, V. A.; Yanovskii, A. I.; Bokii, N. G.; Struchkov, Yu T.; Tarnopolskii, B. L. (1979). "Physico-chemical and structural investigation of aluminium isopropoxide." J. Inorg. Nucl. Chem. 41(1): 5-11, doi:10.1016/0022-1902(79)80384-X.
  5. Wilhoit, R. C.; Burton, J. R.; Kuo, Fu-tien; Huang, Sui-Rong; Viquesnel, A. (1 December 1962). "Properties of aluminium ethoxide". Journal of Inorganic and Nuclear Chemistry. 24 (7): 851–861. doi:10.1016/0022-1902(62)80106-7. ISSN 0022-1902.
  6. North, Michael; Young, Carl (2 November 2011). "Reducing the Cost of Production of Bimetallic Aluminium Catalysts for the Synthesis of Cyclic Carbonates". ChemSusChem. 4 (11): 1685–1693. Bibcode:2011ChSCh...4.1685N. doi:10.1002/cssc.201100239. PMID 22045591.

Share this article:

This article uses material from the Wikipedia article Aluminium_ethoxide, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.