Water_(data_page)

Water (data page)

Water (data page)

Chemical data page for water


This page provides supplementary data to the article properties of water.

Further comprehensive authoritative data can be found at the NIST Chemistry WebBook page on thermophysical properties of fluids.[1]

Structure and properties

More information Structure and properties ...

Thermodynamic properties

More information Phase behavior, Solid properties ...

Liquid physical properties

Temperature dependence of the surface tension of pure water
Temperature dependence of the density of ice and water
More information Velocity of sound in water, Viscosity ...
More information Temperature, °C, Conductivity, μS/m ...

Water/steam equilibrium properties

Vapor pressure formula for steam in equilibrium with liquid water:[14]

where P is equilibrium vapor pressure in kPa, and T is temperature in kelvins.

For T = 273 K to 333 K: A = 7.2326; B = 1750.286; C = 38.1.

For T = 333 K to 423 K: A = 7.0917; B = 1668.21; C = 45.1.

More information Steam table ...

Data in the table above is given for water–steam equilibria at various temperatures over the entire temperature range at which liquid water can exist. Pressure of the equilibrium is given in the second column in kPa. The third column is the heat content of each gram of the liquid phase relative to water at 0 °C. The fourth column is the heat of vaporization of each gram of liquid that changes to vapor. The fifth column is the work PΔV done by each gram of liquid that changes to vapor. The sixth column is the density of the vapor.

Melting point of ice at various pressures

Data obtained from CRC Handbook of Chemistry and Physics 44th ed., p. 2390.

Pressure kPaTemp. °C
101.3250.0
32950−2.5
60311−5.0
87279−7.5
113267−10.0
138274−12.5
159358−15.0
179952−17.5
200251−20.0
215746−22.1

Table of various forms of ice

More information Properties of various forms of ice, Ice form ...

Ice XI triple point is theoretical and has never been obtained

Phase diagram

Log-lin pressure–temperature phase diagram of water. The Roman numerals indicate various ice phases.

Water with dissolved NaCl

Water–NaCl phase diagram
More information NaCl, wt%, Teq, °C ...

Note: ρ is density, n is refractive index at 589 nm,[clarification needed] and η is viscosity, all at 20 °C; Teq is the equilibrium temperature between two phases: ice/liquid solution for Teq < 0–0.1 °C and NaCl/liquid solution for Teq above 0.1 °C.

Self-ionization

More information °C, pKw ...

Spectral data

More information UV-Vis, IR ...

Self-diffusion coefficients

Experimental self-diffusion coefficients at various temperatures[21]
Temperature in °C Coefficients in 10−9 m2/s
0 1.099
1 1.138
4 1.261
5 1.303
10 1.525
15 1.765
20 2.023
25 2.299
30 2.594
35 2.907
40 3.238
45 3.588
50 3.956
56 4.423
60 4.748
70 5.615
80 6.557
90 7.574
100 8.667

Additional data translated from German "Wasser (Stoffdaten)" page

The data that follows was copied and translated from the German language Wikipedia version of this page (which has moved to here). It provides supplementary physical, thermodynamic, and vapor pressure data, some of which is redundant with data in the tables above, and some of which is additional.

Physical and thermodynamic tables

In the following tables, values are temperature-dependent and to a lesser degree pressure-dependent, and are arranged by state of aggregation (s = solid, lq = liquid, g = gas), which are clearly a function of temperature and pressure. All of the data were computed from data given in "Formulation of the Thermodynamic Properties of Ordinary Water Substance for Scientific and General Use" (IAPWS , 1984) (obsolete as of 1995).[22] This applies to:

Standard conditions

In the following table, material data are given for standard pressure of 0.1 MPa (equivalent to 1 bar). Up to 99.63 °C (the boiling point of water at 0.1 MPa), at this pressure water exists as a liquid. Above that, it exists as water vapor. Note that the boiling point of 100.0 °C is at a pressure of 0.101325 MPa (1 atm), which is the average atmospheric pressure.

 
Water/steam data table at standard pressure (0.1 MPa)
T °C V
dm3/kg
H
kJ/kg
U
kJ/kg
S
kJ/(kg·K)
cp
kJ/(kg·K)
γ
10−3/K
λ
mW / (m·K)
η
μPa·s
σ   
mN/m
0 lq1.00020.06−0.04−0.00014.228−0.080561.0179275.65
51.000021.121.00.0764.2000.011570.6151874.95
101.000342.142.00.1514.1880.087580.0130674.22
151.000963.062.90.2244.1840.152589.4113773.49
201.001883.983.80.2964.1830.209598.4100172.74
251.0029104.8104.70.3674.1830.259607.2890.471.98
301.0044125.8125.70.4374.1830.305615.5797.771.20
351.0060146.7146.60.5054.1830.347623.3719.670.41
401.0079167.6167.50.5724.1820.386630.6653.369.60
451.0099188.5188.40.6384.1820.423637.3596.368.78
501.0121209.4209.30.7044.1810.457643.6547.167.95
601.0171251.2251.10.8314.1830.522654.4466.666.24
701.0227293.1293.00.9554.1870.583663.1404.164.49
801.0290335.0334.91.0754.1940.640670.0354.562.68
901.0359377.0376.91.1934.2040.696675.3314.660.82
99.63lq1.0431417.5417.41.3034.2170.748679.0283.058.99
g1694.3267525057.3592.0432.88525.0512.26
100 g1696.1267525067.3612.0422.88125.0812.2758.92
2002172.3287426577.8331.9752.10033.2816.1837.68
3002638.8307328108.2152.0131.76143.4220.2914.37
5003565.5348831318.8342.1351.29766.97028.57
7504721.0404335719.4552.3080.978100.3038.48
10005875.5464240549.9782.4780.786136.347.66
The values for surface tension for the liquid section of the table are for a liquid/air interface. Values for the gas section of the table are for a liquid/saturated steam interface.

Triple point

In the following table, material data are given with a pressure of 611.7 Pa (equivalent to 0.006117 bar). Up to a temperature of 0.01 °C, the triple point of water, water normally exists as ice, except for supercooled water, for which one data point is tabulated here. At the triple point, ice can exist together with both liquid water and vapor. At higher temperatures, the data are for water vapor only.

 
Water/steam data table at triple point pressure (0.0006117 MPa)
T °C V
dm3/kg
H
kJ/kg
U
kJ/kg
S
kJ/(kg·K)
cp
kJ/(kg·K)
γ
10−3/K
λ
mW / (m·K)
η
μPa·s
0 lq1.0002−0.04−0.04−0.00024.339−0.081561.01792
0.01s1.0908−333.4−333.4−1.2211.930.12180
lq1.00020.0004.229−0.080561.01791
g205986250023749.1541.8683.67217.079.22
5 g209913250923819.1881.8673.60517.339.34
10213695251923889.2221.8673.54017.609.46
15217477252823959.2541.8683.47817.889.59
20221258253724029.2861.8683.41718.179.73
25225039254724099.3181.8693.35918.479.87
30228819255624169.3491.8693.30418.7810.02
35232598256524239.3801.8703.24919.1010.17
40236377257524309.4101.8713.19719.4310.32
45240155258424379.4391.8723.14719.7710.47
50243933259324449.4691.8743.09820.1110.63
60251489261224599.5261.8763.00420.8210.96
70259043263124739.5811.8802.91621.5611.29
80266597265024879.6351.8832.83322.3111.64
90274150266925019.6881.8872.75523.1011.99
100281703268825159.7391.8912.68123.9012.53
2003572162879266110.1941.9402.11432.8916.21
3004327213076281110.5712.0001.74543.2620.30
5005837253489313211.1882.1311.29366.9028.57
7507724774043357111.8082.3070.977100.2038.47
10009612274642405412.3312.4780.785136.3047.66

Saturated vapor pressure

The following table is based on different, complementary sources and approximation formulas, whose values are of various quality and accuracy. The values in the temperature range of −100 °C to 100 °C were inferred from D. Sunday (1982) and are quite uniform and exact. The values in the temperature range of the boiling point of water up to the critical point (100 °C to 374 °C) are drawn from different sources and are substantially less accurate; hence they should be used only as approximate values.[23][24][25][26]

To use the values correctly, consider the following points:

  • The values apply only to smooth interfaces and in the absence other gases or gas mixtures such as air. Hence they apply only to pure phases and need a correction factor for systems in which air is present.
  • The values were not computed according formulas widely used in the US, but using somewhat more exact formulas (see below), which can also be used to compute further values in the appropriate temperature ranges.
  • The saturated vapor pressure over water in the temperature range of −100 °C to −50 °C is only extrapolated [Translator's note: Supercooled liquid water is not known to exist below −42 °C].
  • The values have various units (Pa, hPa or bar), which must be considered when reading them.

Formulas

The table values for −100 °C to 100 °C were computed by the following formulas, where T is in kelvins and vapor pressures, Pw and Pi, are in pascals.

Over liquid water

loge(Pw) = −6094.4642 T−1 + 21.1249952 − 2.724552×10−2 T + 1.6853396×10−5 T2 + 2.4575506 loge(T)

For temperature range: 173.15 K to 373.15 K or equivalently −100 °C to 100 °C

Over ice

loge(Pi) = −5504.4088 T−1 − 3.5704628 − 1.7337458×10−2 T + 6.5204209×10−6 T2 + 6.1295027 loge(T)

For temperature range: 173.15 K to 273.15 K or equivalently −100 °C to 0 °C

At triple point

An important basic value, which is not registered in the table, is the saturated vapor pressure at the triple point of water. The internationally accepted value according to measurements of Guildner, Johnson and Jones (1976) amounts to:

Pw(ttp = 0.01 °C) = 611.657 Pa ± 0.010 Pa at (1 − α) = 99%
 
More information Values of saturated vapor pressure of water ...

Magnetic susceptibility

Accepted standardized value of the magnetic susceptibility of water at 20 °C (room temperature) is −12.97 cm3/mol.[27]

Accepted standardized value of the magnetic susceptibility of water at 20 °C (room temperature) is −0.702 cm3/g.[27]

More information Isotopolog, state, Temperature in K ...
  This box:   

See also


References

  1. "Thermophysical Properties of Fluid Systems". NIST Chemistry WebBook. National Institute of Standards and Technology. doi:10.18434/T4D303. NIST Standard Reference Database Number 69.
  2. Lide 2004, p. 6-15.
  3. Maksyutenko, Pavlo; Rizzo, Thomas R.; Boyarkin, Oleg V. (2006). "A direct measurement of the dissociation energy of water". The Journal of Chemical Physics. 125 (18): 181101. Bibcode:2006JChPh.125r1101M. doi:10.1063/1.2387163. PMID 17115729.
  4. Cook, R; Delucia, F; Helminger, P (1974). "Molecular force field and structure of water: Recent microwave results". Journal of Molecular Spectroscopy. 53 (1): 62–76. Bibcode:1974JMoSp..53...62C. doi:10.1016/0022-2852(74)90261-6.
  5. Hoy, AR; Bunker, PR (1979). "A precise solution of the rotation bending Schrödinger equation for a triatomic molecule with application to the water molecule". Journal of Molecular Spectroscopy. 74 (1): 1–8. Bibcode:1979JMoSp..74....1H. doi:10.1016/0022-2852(79)90019-5.
  6. "List of experimental bond angles of type aHOH". Computational Chemistry Comparison and Benchmark DataBase.
  7. Griffiths, David Jeffery (1999). Introduction to Electrodynamics (3rd ed.). Prentice Hall. p. 275. ISBN 978-0-13-919960-8.
  8. "Water and the Speed of Sound". www.engineeringtoolbox.com. Retrieved 2008-04-29.
  9. Dean & Lange 1999, p. 1199: Due to the old definition of liter used at the time, the data from the Handbook was converted from old g/ml to g/cm3, by multiplying by 0.999973
  10. Franks 2012, p. 376.
  11. Lide 2004, p. 6-201.
  12. Revised Release on Viscosity and Thermal Conductivity of Heavy Water Substance, The International Association for the Properties of Water and Steam Lucerne, Switzerland, August 2007.
  13. Martin Chaplin. "Water Phase Diagram". London South Bank University. Retrieved 2022-05-27.
  14. Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. pp. 8–71, 8–116. ISBN 0-8493-0486-5.
  15. Martin Chaplin. "Water ionization". London South Bank University. Retrieved 2022-05-27.
  16. Martin Chaplin. "Water Absorption Spectrum". London South Bank University. Retrieved 2022-05-27.
  17. Fulmer, Gregory R.; Miller, Alexander J. M.; Sherden, Nathaniel H.; Gottlieb, Hugo E.; Nudelman, Abraham; Stoltz, Brian M.; Bercaw, John E.; Goldberg, Karen I. (2010). "NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist" (PDF). Organometallics. 29 (9): 2176–2179. doi:10.1021/om100106e. ISSN 0276-7333.
  18. "IAPWS". Main IAPWS Thermodynamic Property Formulations. Retrieved 4 May 2023. In 1995, IAPWS approved a new formulation of the thermodynamic properties of water and steam for general and scientific use. This replaced the 1984 formulation of Haar, Gallagher and Kell, and now serves as the international standard for water's thermodynamic properties.
  19. Guildner, L. A.; Johnson, D. P.; Jones, F. E. (1976). "Vapor Pressure of Water at Its Triple Point: Highly Accurate Value". Science. 191 (4233): 1261. Bibcode:1976Sci...191.1261G. doi:10.1126/science.191.4233.1261. PMID 17737716. S2CID 37399612.
  20. Klaus Scheffler (1981): Wasserdampftafeln: thermodynam. Eigenschaften von Wasser u. Wasserdampf bis 800°C u. 800 bar (Water Vapor Tables: Thermodynamic Characteristics of Water and Water Vapor to 800°C and 800 bar), Berlin [u.a.] ISBN 3-540-10930-7
  21. D. Sonntag und D. Heinze (1982): Sättigungsdampfdruck- und Sättigungsdampfdichtetafeln für Wasser und Eis. (Saturated Vapor Pressure and Saturated Vapor Density Tables for Water and Ice)(1. Aufl.), VEB Deutscher Verlag für Grundstoffindustrie
  22. Ulrich Grigull, Johannes Staub, Peter Schiebener (1990): Steam Tables in SI-Units – Wasserdampftafeln. Springer-Verlagdima gmbh
  23. Weast, Robert (1983–1984). CRC, Handbook of Chemistry and Physics 64th edition. Boca Raton, Florida: CRC publishing. pp. E-119. ISBN 0-8493-0464-4.

[1]

Bibliography

  1. India, UNI KLINGER. "STEAM ENGINEERING SERVICES". UNI KLINGER | A leading company in Fluid sealing & Fluid Control. Archived from the original on 30 November 2016. Retrieved 30 November 2016.

Share this article:

This article uses material from the Wikipedia article Water_(data_page), and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.