Solar_eclipse_of_May_30,_1984

Solar eclipse of May 30, 1984

Solar eclipse of May 30, 1984

20th-century annular solar eclipse


An annular solar eclipse occurred on Wednesday, May 30, 1984. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in Mexico, the United States, Azores Islands, Morocco and Algeria. It was the first annular solar eclipse visible in the US in 33 years. The Moon's apparent diameter was near the average diameter because it occurred 6.7 days after apogee (apogee on May 24, 1984, at 01:00 UTC) and 7.8 days before perigee (perigee on June 7, 1984, at 11:15 UTC).

Quick Facts Type of eclipse, Nature ...

Observations

During this eclipse, the apex of the moon's umbral cone was very close to the Earth's surface, and the magnitude was very large. The edges of the moon and the sun were very close to each other as seen from the Earth. Images of the chromosphere and Baily's beads on the lunar limb, which are usually only visible during a total solar eclipse, could also be taken. A team of the University of Florida took images, about half of which being those of the chromosphere and the other half the photosphere, in Greenville, South Carolina.[1][2] Jay Pasachoff led a team from Williams College, Massachusetts to Picayune, Mississippi.[3]

Eclipses of 1984

Solar eclipses of 1982–1985

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[4]

Note: Partial solar eclipses on January 25, 1982 and July 20, 1982 occur in the previous lunar year eclipse set.

More information series sets from 1982 to 1985, Ascending node ...

Saros 137

It is a part of Saros cycle 137, repeating every 18 years, 11 days, containing 70 events. The series started with partial solar eclipse on May 25, 1389. It contains total eclipses from August 20, 1533, through December 6, 1695, first set of hybrid eclipses from December 17, 1713, through February 11, 1804, first set of annular eclipses from February 21, 1822, through March 25, 1876, second set of hybrid eclipses from April 6, 1894, through April 28, 1930, and second set of annular eclipses from May 9, 1948, through April 13, 2507. The series ends at member 70 as a partial eclipse on June 28, 2633. The longest duration of totality was 2 minutes, 55 seconds on September 10, 1569. Solar Saros 137 has 55 umbral eclipses from August 20, 1533, through April 13, 2507 (973.62 years).

More information Series members 30–40 occur between 1901 and 2100: ...

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

More information Inex series members between 1901 and 2100: ...

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

More information 22 eclipse events between January 5, 1935 and August 11, 2018, January 4-5 ...

Notes

  1. Glenn Schneider. "30 May 1984 7-second "Broken" Annular Solar Eclipse near Greenville, SC, USA". Archived from the original on 21 February 2020.
  2. "1984-5-30 "残缺"日环食" (in Chinese). AstroChina 天文中国. Archived from the original on 7 March 2016.
  3. Jay Pasachoff. "1984 Annular Eclipse". Williams College. Archived from the original on 29 August 2019.
  4. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.

References



Share this article:

This article uses material from the Wikipedia article Solar_eclipse_of_May_30,_1984, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.