Portal:Electronics

Portal:Electronics

Portal:Electronics


The Electronics Portal

Modern surface-mount electronic components on a printed circuit board, with a large integrated circuit at the top

Electronics is a scientific and engineering discipline that studies and applies the principles of physics to design, create, and operate devices that manipulate electrons and other electrically charged particles. Electronics is a subfield of electrical engineering which uses active devices such as transistors, diodes, and integrated circuits to control and amplify the flow of electric current and to convert it from one form to another, such as from alternating current (AC) to direct current (DC) or from analog signals to digital signals.

Electronic devices have hugely influenced the development of many aspects of modern society, such as telecommunications, entertainment, education, health care, industry, and security. The main driving force behind the advancement of electronics is the semiconductor industry, which in response to global demand continually produces ever-more sophisticated electronic devices and circuits. The semiconductor industry is one of the largest and most profitable sectors in the global economy, with annual revenues exceeding $481 billion in 2018. The electronics industry also encompasses other sectors that rely on electronic devices and systems, such as e-commerce, which generated over $29 trillion in online sales in 2017. (Full article...)

These are Good articles, which meet a core set of high editorial standards.

Selected image


Credit: User:John Fader
Both sides of the printed circuit board inside a typical keydrive (circa 2004), in this case an inexpensive 64 Mbyte USB2.0 device.

Selected biography

Michael Faraday, FRS (September 22, 1791 – August 25, 1867) was an English chemist and physicist who contributed significantly to the fields of electromagnetism and electrochemistry. He established that magnetism could affect rays of light and that there was an underlying relationship between the two phenomena. It was largely due to his efforts that electricity became viable for use in technology. The SI unit of capacitance, the farad, is named after him, as is the Faraday constant, the charge on a mole of electrons (about 96,485 coulombs). Faraday's law of induction states that a magnetic field changing in time creates a proportional electromotive force.

Selected article

A distributed-element filter is an electronic filter in which capacitance, inductance, and resistance (the elements of the circuit) are not localised in discrete capacitors, inductors, and resistors as they are in conventional filters. Its purpose is to allow a range of signal frequencies to pass, but to block others. Conventional filters are constructed from inductors and capacitors, and the circuits so built are described by the lumped element model, which considers each element to be "lumped together" at one place. That model is conceptually simple, but it becomes increasingly unreliable as the frequency of the signal increases, or equivalently as the wavelength decreases. The distributed-element model applies at all frequencies, and is used in transmission-line theory; many distributed-element components are made of short lengths of transmission line. In the distributed view of circuits, the elements are distributed along the length of conductors and are inextricably mixed together. The filter design is usually concerned only with inductance and capacitance, but because of this mixing of elements they cannot be treated as separate "lumped" capacitors and inductors. There is no precise frequency above which distributed element filters must be used but they are especially associated with the microwave band (wavelength less than one metre).

Distributed-element filters are used in many of the same applications as lumped element filters, such as selectivity of radio channel, bandlimiting of noise and multiplexing of many signals into one channel. Distributed-element filters may be constructed to have any of the bandforms possible with lumped elements (low-pass, band-pass, etc.) with the exception of high-pass, which is usually only approximated. All filter classes used in lumped element designs (Butterworth, Chebyshev, etc.) can be implemented using a distributed-element approach. (Full article...)

Did you know (auto-generated) - load new batch

Consumer showcase

The GeForce 6600 (NV43) was officially launched on August 12th, 2004, several months after the launch of the 6800 Ultra. With half the pixel pipelines and vertex shaders of the 6800 GT, and a smaller 128-bit memory bus, the lower-performance and lower-cost 6600 is the mainstream product of the GeForce 6 series. The 6600 series retains the core rendering features of the 6800 series, including SLI. Equipped with fewer rendering units, the 6600 series processes pixel data at a slower rate than the more powerful 6800 series.

Selected design

WikiProjects

Main topics


Subcategories

Associated Wikimedia

The following Wikimedia Foundation sister projects provide more on this subject:

Discover Wikipedia using portals

Purge server cache


Share this article:

This article uses material from the Wikipedia article Portal:Electronics, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.