Omar Khayyam
Ghiyāth al-Dīn Abū al-Fatḥ ʿUmar ibn Ibrāhīm Nīsābūrī[3][4] (18 May 1048 – 4 December 1131), commonly known as Omar Khayyam (Persian: عمر خیّام),[lower-alpha 1] was a polymath, known for his contributions to mathematics, astronomy, philosophy, and Persian poetry. He was born in Nishapur, the initial capital of the Seljuk Empire. As a scholar, he was contemporary with the rule of the Seljuk dynasty around the time of the First Crusade.
Omar Khayyam عمر خیّام | |
---|---|
![]() Statue of Omar Khayyam in his birthplace and hometown, Nishapur. | |
Born | 18 May[1] 1048[2] |
Died | 4 December[1] 1131 (aged 83)[2] Nishapur, Khorasan, Seljuk Empire |
Academic background | |
Influences | Avicenna, al-Khwārizmī, Euclid, Apollonius of Perge |
Academic work | |
Main interests | Mathematics (medieval Islamic), astronomy, Persian philosophy, Persian poetry |
Influenced | Tusi, Al-Khazini, Nizami Aruzi of Samarcand, Hafez, Sadegh Hedayat, André Gide, John Wallis, Saccheri, Edward FitzGerald, Maurice Bouchor, Henri Cazalis, Jean Chapelain, Amin Maalouf |
As a mathematician, he is most notable for his work on the classification and solution of cubic equations, where he provided geometric solutions by the intersection of conics.[5] Khayyam also contributed to the understanding of the parallel axiom.[6]: 284 As an astronomer, he calculated the duration of the solar year with remarkable precision and accuracy, and designed the Jalali calendar, a solar calendar with a very precise 33-year intercalation cycle[7][8]: 659 that provided the basis for the Persian calendar that is still in use after nearly a millennium.
There is a tradition of attributing poetry to Omar Khayyam, written in the form of quatrains (rubāʿiyāt رباعیات). This poetry became widely known to the English-reading world in a translation by Edward FitzGerald (Rubaiyat of Omar Khayyam, 1859), which enjoyed great success in the Orientalism of the fin de siècle.