Humanoid_robot

Humanoid robot

Humanoid robot

Body shape similar to a human


A humanoid robot is a robot resembling the human body in shape. The design may be for functional purposes, such as interacting with human tools and environments, for experimental purposes, such as the study of bipedal locomotion, or for other purposes. In general, humanoid robots have a torso, a head, two arms, and two legs, though some humanoid robots may replicate only part of the body, for example, from the waist up. Some humanoid robots also have heads designed to replicate human facial features such as eyes and mouths. Androids are humanoid robots built to aesthetically resemble humans.

Ameca generation 1 pictured in the lab at Engineered Arts Ltd.

History

The concept of a humanoid robot originated in many different cultures around the world. Some of the earliest accounts of the idea of humanoid automata date to the 4th century BCE in Greek mythologies and various religious and philosophical texts from China. Physical prototypes of humanoid automata were later created in the Middle East, Italy, Japan, and France.

Greece

The Greek god of blacksmiths, Hephaestus, created several different humanoid automata in various myths. In Homer's Iliad, Hephaestus created golden handmaidens and imbued them with human-like voices to serve as speaking tools or instruments.[1] Another Greek myth details how Hephaestus crafted a giant bronze automaton named Talos to protect the island of Crete from invaders.[2]

China

In the 3rd century BCE, a Taoist philosophical text called the Liezi, written by Chinese philosopher Lie Yukou, detailed the idea of a humanoid automaton. The text includes mention of an engineer named Yan Shi who created a life-size, human-like robot for the fifth king of the Chinese Zhou Dynasty, King Mu.[3] The robot was primarily constructed of leather and wood. It was capable of walking, singing, and moving all parts of its body.[3]

Middle East

In the 13th century, a Muslim engineer named Ismail al-Jazari designed various humanoid automata. He created a waitress robot that would dispense drinks from a liquid reservoir and appear out of an automatic door to serve them.[4] Another automaton he created was used for hand washing to refill a basin with water after being drained.[5]

Italy

Model of Leonardo's robot with inner workings

In the 1400s, Leonardo da Vinci conceptualized a complex mechanical robot clad in a suit of armor, capable of sitting, standing, and independently moving its arms.[6] The entire robot was operated by a system of pulleys and cables.

Japan

From the 17th to 19th centuries, the Japanese built humanoid automata called karakuri puppets. These puppets resembled dolls and were used for entertainment in theatre, homes, and religious festivals.[7] Karakuri puppets that were used for theater plays were called butai karakuri.[8] Small karakuri puppets found in homes, called zashiki kurakuri, were placed on tables to dance, beat drums, or serve drinks.[8] The puppets used in religious festivals were known as Dashi karakuri, and they served to reenact myths and legends.[9]

France

In the 18th century, French inventor Jacques de Vaucanson created a significant humanoid automaton called The Flute Player. This wooden, human-sized robot was capable of playing various melodies with the flute. It consisted of a system of bellows, pipes, weights, and other mechanical components to simulate to the muscles necessary to play the flute.[10]

Applications

iCub robot at the Genoa Science Festival, Italy, in 2009

Humanoid robots are now used as research tools in several scientific areas. Researchers study the human body structure and behavior (biomechanics) to build humanoid robots. On the other side, the attempt to simulate the human body leads to a better understanding of it. Human cognition is a field of study which is focused on how humans learn from sensory information in order to acquire perceptual and motor skills. This knowledge is used to develop computational models of human behavior, and it has been improving over time.

It has been suggested that very advanced robotics will facilitate the enhancement of ordinary humans. See transhumanism.

Medical and research

Humanoid robots are a valuable resource in the world of medicine and biotechnology, as well as other fields of research such as biomechanics and cognitive science.[11] Humanoid robots are being used to develop complex prosthetics for individuals with physical disabilities such as missing limbs.[12] The WABIAN-2 is a new medical humanoid robot created to help patients in the rehabilitation of their lower limbs.[12]

Although the initial aim of humanoid research was to build better orthosis and prosthesis for human beings, knowledge has been transferred between both disciplines. A few examples are powered leg prosthesis for the neuromuscularly impaired, ankle-foot orthosis, biological realistic leg prosthesis, and forearm prosthesis.

Valkyrie,[13] from NASA

Humanoid robots can be used as test subjects for the practice and development of personalized healthcare aids, essentially performing as robotic nurses for demographics such as the elderly.[12] Humanoids are also suitable for some procedurally-based vocations, such as reception-desk administrators and automotive manufacturing line workers. In essence, since they can use tools and operate equipment and vehicles designed for the human form, humanoids could theoretically perform any task a human being can, so long as they have the proper software. However, the complexity of doing so is immense.

Entertainment

Humanoid robots have had a long history in the realm of entertainment, from the conception and ideas in the story of Prometheus to the application and physical build of modern animatronics used for theme parks.[11] Current uses and development of humanoid robots in theme parks are focused on creating stuntronics.[14] Stuntronics are humanoid robots built for serving as stunt doubles, and are designed to simulate life-like, untethered, dynamic movement.[14] Several Disney theme park shows utilize animatronic robots that look, move and speak much like human beings. Although these robots look realistic, they have no cognition or physical autonomy. Various humanoid robots and their possible applications in daily life are featured in an independent documentary film called Plug & Pray, which was released in 2010.

Demonstrative

Though many real-world applications for humanoid robots are unexplored, their primary use is to demonstrate up-and-coming technologies.[15] Modern examples of humanoid robots, such as the Honda Asimo, are revealed to the public in order to demonstrate new technological advancements in motor skills, such as walking, climbing, and playing an instrument.[15] Other humanoid robots have been developed for household purposes, however excel only in single purpose skills and are far from autonomous.[15] Humanoid robots, especially those with artificial intelligence algorithms, could be useful for future dangerous and/or distant space exploration missions, without having the need to turn back around again and return to Earth once the mission is completed.

Sensors

A sensor is a device that measures some attribute of the world. Being one of the three primitives of robotics (besides planning and control), sensing plays an important role in robotic paradigms.

Sensors can be classified according to the physical process with which they work or according to the type of measurement information that they give as output. In this case, the second approach was used.[16]

Proprioceptive

Proprioceptive sensors sense the position, orientation, and speed of the humanoid's body and joints, along with other internal values.[17]

In human beings, the otoliths and semi-circular canals (in the inner ear) are used to maintain balance and orientation.[18] Additionally, humans use their own proprioceptive sensors (e.g. touch, muscle extension, limb position) to help with their orientation. Humanoid robots use accelerometers to measure the acceleration, from which velocity can be calculated by integration;[19] tilt sensors to measure inclination; force sensors placed in robot's hands and feet to measure contact force with environment;[20] position sensors that indicate the actual position of the robot (from which the velocity can be calculated by derivation);[21] and even speed sensors.

Exteroceptive

An artificial hand holding a lightbulb

Arrays of tactels can be used to provide data on what has been touched. The Shadow Hand uses an array of 34 tactels arranged beneath its polyurethane skin on each finger tip.[22] Tactile sensors also provide information about forces and torques transferred between the robot and other objects.

Vision refers to processing data from any modality which uses the electromagnetic spectrum to produce an image. In humanoid robots it is used to recognize objects and determine their properties. Vision sensors work most similarly to the eyes of human beings. Most humanoid robots use CCD cameras as vision sensors.

Sound sensors allow humanoid robots to hear speech and environmental sounds, akin to the ears of the human being. Microphones are usually used for the robots to convey speech.

Actuators

Actuators are the motors responsible for motion in the robot.[23]

Humanoid robots are constructed in such a way that they mimic the human body. They use actuators that perform like muscles and joints, though with a different structure.[23] The actuators of humanoid robots can be either electric, pneumatic, or hydraulic.[24][25] It is ideal for these actuators to have high power, low mass, and small dimensions.[25]

Electric

Electric actuators are the most popular types of actuators in humanoid robots.[24] These actuators are smaller in size, and a single electric actuator may not produce enough power for a human-sized joint.[24] Therefore, it is common to use multiple electric actuators for a single joint in a humanoid robot.[24] An example of a humanoid robot using electric actuators is HRP-2.[25]

Hydraulic

Hydraulic actuators produce higher power than electric actuators and pneumatic actuators, and they have the ability to control the torque they produce better than other types of actuators.[25] However, they can become very bulky in size.[24][25] One solution to counter the size issue is electro-hydrostatic actuators (EHA).[25] The most popular example of a humanoid robot using hydraulic actuators is the ATLAS robot made by Boston Dynamics.[25]

Pneumatic

Pneumatic actuators operate on the basis of gas compressibility.[24][25] As they are inflated, they expand along the axis, and as they deflate, they contract. If one end is fixed, the other will move in a linear trajectory. A popular example of a pneumatic actuator is the Mac Kibben muscle.[25]

Planning and control

Planning in robots is the process of planning out motions and trajectories for the robot to carry out.[26] Control is the actual execution of these planned motions and trajectories.[26] In humanoid robots, the planning must carry out biped motions, meaning that robots should plan motions similar to a human.[27] Since one of the main uses of humanoid robots is to interact with humans, it is important for the planning and control mechanisms of humanoid robots to work in a variety of terrain and environments.[27]

The question of walking biped robots stabilization on the surface is of great importance.[28] Maintenance of the robot's gravity center over the center of bearing area for providing a stable position can be chosen as a goal of control.[28]

To maintain dynamic balance during the walk, a robot needs information about contact force and its current and desired motion.[27] The solution to this problem relies on a major concept, the Zero Moment Point (ZMP).[27]

Another characteristic of humanoid robots is that they move, gather information (using sensors) on the "real world", and interact with it.[29] They do not stay still like factory manipulators and other robots that work in highly structured environments.[29] To allow humanoids to move in complex environments, planning and control must focus on self-collision detection, path planning and obstacle avoidance.[29][30]

Humanoid robots do not yet have some features of the human body.[31] They include structures with variable flexibility, which provide safety (to the robot itself and to the people), and redundancy of movements, i.e. more degrees of freedom and therefore wide task availability.[31] Although these characteristics are desirable to humanoid robots, they will bring more complexity and new problems to planning and control.[32] The field of whole-body control deals with these issues and addresses the proper coordination of numerous degrees of freedom, e.g. to realize several control tasks simultaneously while following a given order of priority.[33][34]

Timeline of developments

More information Year, Subject ...

In science fiction

A common theme for the depiction of humanoid robots in science fiction pertains to how they can help humans in society or serve as threats to humanity.[106] This theme essentially questions whether artificial intelligence is a force of good or bad for mankind.[106] Humanoid robots that are depicted as good for society and benefit humans are Commander Data in Star Trek and C-3PO in Star Wars.[106] Opposite portrayals where humanoid robots are shown as scary and threatening to humans are the T-800 in Terminator and Megatron in Transformers.[106]An Indian Tamil-language film which showed the pros and cons of a humanoid robot Chitti.[107][108]

Another prominent theme found in science fiction regarding humanoid robots focuses on personhood. Certain films, particularly Blade Runner and Blade Runner 2049, explore whether or not a constructed, synthetic being should be considered a person.[109] In the films, androids called "replicants" are created indistinguishably from human beings, yet they are shunned and do not possess the same rights as humans. This theme incites audience sympathy while also sparking unease at the idea of humanoid robots mimicking humans too closely.[110]

See also


References

Citations

  1. Gera, Deborah Levine (2003). Ancient Greek ideas on speech, language, and civilization. Oxford: Oxford University Press. ISBN 0-19-925616-0. OCLC 52486031.
  2. University, Stanford (2019-02-28). "Ancient myths reveal early fantasies about artificial life". Stanford News. Retrieved 2021-11-03.
  3. Needham, Joseph (1991). Science and Civilisation in China: Volume 2, History of Scientific Thought. Cambridge University Press. ISBN 978-0-521-05800-1.
  4. @NatGeoUK (2020-08-01). "Medieval robots? They were just one of this Muslim inventor's creations". National Geographic. Retrieved 2021-11-03.
  5. Moran, Michael E. (2006-12-01). "The da Vinci Robot". Journal of Endourology. 20 (12): 986–990. doi:10.1089/end.2006.20.986. ISSN 0892-7790. PMID 17206888.
  6. Law, Jane Marie (1997). Puppets of nostalgia : the life, death, and rebirth of the Japanese Awaji ningyō tradition. Princeton, N.J.: Princeton University Press. ISBN 0-691-02894-X. OCLC 35223048.
  7. Brown, Steven T. (2010). Tokyo cyberpunk : posthumanism in Japanese visual culture. New York: Palgrave Macmillan. ISBN 978-0-230-10360-3. OCLC 468854451.
  8. Frenchy Lunning (2008). Limits of the human. Minneapolis: University of Minnesota Press. ISBN 978-0-8166-6968-4. OCLC 320843109.
  9. Siciliano, Bruno; Khatib, Oussama (2019), Goswami, Ambarish; Vadakkepat, Prahlad (eds.), "Humanoid Robots: Historical Perspective, Overview, and Scope", Humanoid Robotics: A Reference, Dordrecht: Springer Netherlands, pp. 3–8, doi:10.1007/978-94-007-6046-2_64, ISBN 978-94-007-6046-2, S2CID 240065030, retrieved 2021-10-25
  10. Ogura, Yu; Aikawa, H.; Shimomura, K.; Kondo, H.; Morishima, A.; Lim, Hun-ok; Takanishi, A. (2006). "Development of a new humanoid robot WABIAN-2". Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006. pp. 76–81. doi:10.1109/ROBOT.2006.1641164. ISBN 0-7803-9505-0. S2CID 16382715.
  11. "Stuntronics – Disney Research". la.disneyresearch.com. Retrieved 2021-10-25.
  12. Behnke, Sven (2008-01-01). "Humanoid Robots - From Fiction to Reality?". KI. 22: 5–9.
  13. Magdy, Khaled (2020-08-01). "What Are Different Types Of Sensors, Classification, Their Applications?". DeepBlue. Retrieved 2021-11-05.
  14. Siegwart, Roland; Nourbakhsh, Illah; Scaramuzza, Davide (2004). Introduction to Autonomous Mobile Robots (Intelligent Robotics and Autonomous Agents series) second edition (PDF). MIT Press. pp. Chapter 4. ISBN 0262015358. Archived (PDF) from the original on 2018-08-27.
  15. "How does the balance system work?". Royal Victorian Eye and Ear Hospital. Archived from the original on 2021-10-23. Retrieved 2021-11-05.
  16. Nistler, Jonathan R.; Selekwa, Majura F. (2011-01-01). "Gravity compensation in accelerometer measurements for robot navigation on inclined surfaces". Procedia Computer Science. Complex adaptive sysytems. 6: 413–418. doi:10.1016/j.procs.2011.08.077. ISSN 1877-0509.
  17. "Types of Tactile Sensor and Its Working Principle". ElProCus - Electronic Projects for Engineering Students. 2016-05-12. Retrieved 2021-11-05.
  18. "Shadow Robot Company: The Hand Technical Specification". Archived from the original on 2008-07-08. Retrieved 2009-04-09.
  19. "Actuators - an overview | ScienceDirect Topics". www.sciencedirect.com. Retrieved 2021-11-05.
  20. Hashimoto, Kenji (2020-11-16). "Mechanics of humanoid robot". Advanced Robotics. 34 (21–22): 1390–1397. doi:10.1080/01691864.2020.1813624. ISSN 0169-1864. S2CID 225290402.
  21. Stasse, O.; Flayols, T. (2019), Venture, Gentiane; Laumond, Jean-Paul; Watier, Bruno (eds.), "An Overview of Humanoid Robots Technologies", Biomechanics of Anthropomorphic Systems, Springer Tracts in Advanced Robotics, vol. 124, Cham: Springer International Publishing, pp. 281–310, doi:10.1007/978-3-319-93870-7_13, ISBN 978-3-319-93870-7, S2CID 13702914, retrieved 2021-10-25
  22. Khatib, Oussama (1994-09-01). "Towards integrated robot planning and control". IFAC Proceedings Volumes. Fourth IFAC Symposium on Robot Control, Capri, Italy, September 19–21, 1994. 27 (14): 351–359. doi:10.1016/S1474-6670(17)47337-X. ISSN 1474-6670.
  23. Fu, Chenglong; Shuai, Mei; Xu, Kai; Zhao, Jiandong; Wang, Jianmei; Huang, Yuanlin; Chen, Ken (2006-07-28). "Planning and control for THBIP-I humanoid robot". 2006 International Conference on Mechatronics and Automation. Vol. 2006. pp. 1066–1071. doi:10.1109/ICMA.2006.257773.
  24. N, Bazylev Dmitry; Alexandrovich, Pyrkin Anton; A, Margun Alexei; A, Zimenko Konstantin; Sergeevich, Kremlev Artem; D, Ibraev Denis; Martin, Čech (2015-06-01). "Approaches for stabilizing of biped robots in a standing position on movable support". Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 97 (3): 418–425. doi:10.17586/2226-1494-2015-15-3-418-425. ISSN 2500-0373.
  25. Raković, Mirko; Savić, Srdjan; Santos-Victor, José; Nikolić, Milutin; Borovac, Branislav (2019). "Human-Inspired Online Path Planning and Biped Walking Realization in Unknown Environment". Frontiers in Neurorobotics. 13: 36. doi:10.3389/fnbot.2019.00036. ISSN 1662-5218. PMC 6558152. PMID 31214011.
  26. Yamane, K.; Murai, A. (2018). "A Comparative Study Between Humans and Humanoid Robots". In Ambarish Goswami; Prahlad Vadakkepat (eds.). Humanoid Robotics: A Reference. pp. 1–20. doi:10.1007/978-94-007-7194-9_7-1. ISBN 978-94-007-7194-9. S2CID 65189332.
  27. "Robots with high degrees of freedom face barriers to adoption". Collaborative Robotics Trends. 2019-10-02. Retrieved 2021-11-04.
  28. Khatib, Oussama; Sentis, Luis; Park, Jaeheung; Warren, James (2004-03-01). "Whole-Body Dynamic Behavior and Control of Human-like Robots". International Journal of Humanoid Robotics. 10: 29–43. doi:10.1142/S0219843604000058.
  29. Hero of Alexandria; Bennet Woodcroft (trans.) (1851). Temple Doors opened by Fire on an Altar. Pneumatics of Hero of Alexandria. London: Taylor Walton and Maberly (online edition from University of Rochester, Rochester, NY). Retrieved on 2008-04-23.
  30. Fowler, Charles B. (October 1967), "The Museum of Music: A History of Mechanical Instruments", Music Educators Journal 54 (2): 45-9
  31. Ancient Discoveries, Episode 11: Ancient Robots. History Channel. Archived from the original on 2014-03-01. Retrieved 2008-09-06 via YouTube.
  32. "Robot History at iiRobotics: The Robot Shop". Archived from the original on 2006-05-22. Retrieved 2005-11-15.
  33. "Nikola Tesla". HISTORY. 13 March 2020. Retrieved 2021-11-04.
  34. "MegaGiant Robotics". megagiant.com. Archived from the original on 2007-08-19. Retrieved 2005-11-15.
  35. Fell, Jade (2016-10-20). "Britain's first robot brought back to life by the Science Museum". eandt.theiet.org. Retrieved 2021-11-04.
  36. "Elektro the Moto-Man Had the Biggest Brain at the 1939 World's Fair". IEEE Spectrum. 2018-09-28. Retrieved 2021-11-04.
  37. US, Christoph Salge,The Conversation. "Asimov's Laws Won't Stop Robots from Harming Humans, So We've Developed a Better Solution". Scientific American. Retrieved 2021-11-04.{{cite web}}: CS1 maint: multiple names: authors list (link)
  38. Wiener, Norbert (1948). Cybernetics: Or Control and Communication in the Animal and the Machine. United States: Massachusetts Institute of Technology. ISBN 0-262-23007-0.
  39. "The Robot Hall of Fame - Powered by Carnegie Mellon University". www.robothalloffame.org. Retrieved 2021-11-04.
  40. "Humanoid History -WABOT-". www.humanoid.waseda.ac.jp. Archived from the original on 1 September 2017. Retrieved 3 May 2018.
  41. Zeghloul, Saïd; Laribi, Med Amine; Gazeau, Jean-Pierre (21 September 2015). Robotics and Mechatronics: Proceedings of the 4th IFToMM International Symposium on Robotics and Mechatronics. Springer. ISBN 9783319223681. Retrieved 3 May 2018 via Google Books.
  42. "Historical Android Projects". androidworld.com. Archived from the original on 2005-11-25. Retrieved 2005-11-15.
  43. Duffy, Vincent G. (19 April 2016). Handbook of Digital Human Modeling: Research for Applied Ergonomics and Human Factors Engineering. CRC Press. ISBN 9781420063523. Retrieved 3 May 2018 via Google Books.
  44. Resolved motion rate control of manipulators and human prostheses DE Whitney - IEEE Transactions on Man-Machine Systems, 1969
  45. "Exoskeletons History - part 4". www.mechatech.co.uk. Retrieved 2021-11-05.
  46. "Electric Dreams - Marc Raibert". robosapiens.mit.edu. Archived from the original on 8 May 2005. Retrieved 3 May 2018.
  47. "Archived copy". Archived from the original on 2005-10-19. Retrieved 2005-11-15.{{cite web}}: CS1 maint: archived copy as title (link)
  48. "Honda|ASIMO|ロボット開発の歴史". honda.co.jp. Archived from the original on 2005-12-29. Retrieved 2005-11-15.
  49. "droidlogic.com". Archived from the original on January 22, 2008.
  50. Hashimoto, Shuji; Narita, Seinosuke; Kasahara, Hironori; Shirai, Katsuhiko; Kobayashi, Atsuo; Takanishi, Atsuo; Sugano, Shigeki; Yamaguchi, Jin'ichi; Sawada, Hideyuki; Takanobu, Hideaki; Shibuya, Koji (2002-01-01). "Humanoid Robots in Waseda University—Hadaly-2 and WABIAN". Auton. Robots. 12: 25–38. doi:10.1023/A:1013202723953. S2CID 1580353.
  51. "QRIO: The Robot That Could". IEEE Spectrum. 2004-05-22. Retrieved 2021-11-05.
  52. "Research & Development". Archived from the original on 2008-05-09. Retrieved 2008-05-21.
  53. "Humanoid Robotics". Archived from the original on 2016-03-04. Retrieved 2012-10-18.
  54. "新サイトへ". kokoro-dreams.co.jp. Archived from the original on 2006-10-23.
  55. "Humanoid Robot - Dynamics and Robotics Center". Archived from the original on 2016-09-19. Retrieved 2016-09-18.
  56. "PKD Android". pkdandroid.org. Archived from the original on 2009-10-01. Retrieved 2019-01-29.
  57. "NEWS wakamaru". Archived from the original on 2007-07-01. Retrieved 2007-07-02.
  58. "Aldebaran Robotics". Archived from the original on 2010-06-14. Retrieved 2012-10-18.
  59. "iCub.org". Archived from the original on 2010-07-16. Retrieved 2012-10-18.
  60. Erico Guizzo. "Humanoid Robot Mahru Mimics a Person's Movements in Real Time". ieee.org. Archived from the original on 2012-10-20.
  61. Roxana Deduleasa (5 December 2007). "I, the Ping-Pong Robot!". softpedia. Archived from the original on 2 February 2009. Retrieved 5 May 2009.
  62. 早稲田大学 理工学部 機械工学科 菅野研究室 TWENDYチーム. "TWENDY-ONE". twendyone.com. Archived from the original on 2012-12-21.
  63. "Best Inventions Of 2008". Time. 2008-10-29. Archived from the original on 2012-11-07.
  64. "Personal Robots Group". Archived from the original on 2010-04-14.
  65. "Meka Robotics LLC". Archived from the original on 2011-01-02.
  66. "Overview". Archived from the original on 2010-04-19. Retrieved 2010-04-27.
  67. Yumpu.com. "January 17, 2013 PDF Edition - Wilbraham-Hampden Times". yumpu.com. Retrieved 2021-11-05.
  68. "Iran Unveils Its Most Advanced Humanoid Robot Yet". IEEE Spectrum. 2020-02-13. Retrieved 2021-11-05.
  69. "HRP-4C - ROBOTS: Your Guide to the World of Robotics". robots.ieee.org. Retrieved 2021-11-05.
  70. "Japanese Humanoid Robot, Kobian, Walks, Talks, Crys and Laughs (VIDEO)". The Inquisitr News. 24 June 2009. Archived from the original on 2011-11-23.
  71. "Say Hello to Robonaut2, NASA's Android Space Explorer of the Future". Popular Science. 5 February 2010. Archived from the original on 2010-02-07.
  72. "How to Make a Humanoid Robot Dance". 2 November 2010. Archived from the original on 2010-11-07.
  73. Eduard Gamonal. "PAL Robotics — advanced full-size humanoid service robots for events and research world-wide". pal-robotics.com. Archived from the original on 2011-03-13. Retrieved 2012-02-21.
  74. "Honda Global | ASIMO". global.honda. Archived from the original on 2021-11-05. Retrieved 2021-11-05.
  75. Schwarz, Max; Pastrana, Julio; Allgeuer, Philipp; Schreiber, Michael; Schüller, Sebastian; Missura, Marcell; Behnke, Sven (2013). "Humanoid TeenSize Open Platform NimbRo-OP". RoboCup 2013: Robot World Cup XVII. Springer. pp. 568–575. ISBN 978-3-662-44467-2.
  76. "Home". theroboticschallenge.org. Archived from the original on 2015-06-11.
  77. "REEM-C - ROBOTS: Your Guide to the World of Robotics". robots.ieee.org. Retrieved 2021-11-05.
  78. Menezes, Beryl (28 January 2015). "Meet Manav, India's first 3D-printed humanoid robot". www.livemint.com. Archived from the original on 2015-09-29. Retrieved 2015-09-30.
  79. "Pepper - ROBOTS: Your Guide to the World of Robotics". robots.ieee.org. Retrieved 2021-11-05.
  80. J. Zhang J, N. Magnenat Thalmann and J. Zheng, Combining Memory and Emotion With Dialog on Social Companion: A Review, Proceedings of the ACM 29th International Conference on Computer Animation and Social Agents (CASA 2016), pp. 1-9, Geneva, Switzerland, May 23–25, 2016
  81. Berger, Sarah (2015-12-31). "Humanlike, Social Robot 'Nadine' Can Feel Emotions And Has A Good Memory, Scientists Claim". International Business Times. Retrieved 2016-01-12.
  82. "How did a Stanford-designed 'humanoid' discover a vase from a Louis XIV shipwreck?". montereyherald.com. Archived from the original on 21 October 2017. Retrieved 3 May 2018.
  83. "TALOS Humanoid Now Available from PAL Robotics". IEEE Spectrum. 2017-03-07. Retrieved 2021-11-05.
  84. "Ranchi man develops humanoid robot Rashmi, Indian version of 'Sophia'". Hindustan Times. 2018-08-02. Retrieved 2020-02-21.
  85. "The humanoid robot, Ameca, revealed at CES show". www.bbc.co.uk. 2022-08-01. Retrieved 2023-01-02.
  86. "Optimus". www.forbes.com. 2022-10-01. Retrieved 2022-11-30.
  87. Mubin, Omar; Wadibhasme, Kewal; Jordan, Philipp; Obaid, Mohammad (2019-03-22). "Reflecting on the Presence of Science Fiction Robots in Computing Literature". ACM Transactions on Human-Robot Interaction. 8 (1): 1–25. doi:10.1145/3303706. ISSN 2573-9522. S2CID 75135568.
  88. Shankar, S. (2010-10-01), Enthiran (Action, Sci-Fi, Thriller), Rajinikanth, Aishwarya Rai Bachchan, Danny Denzongpa, Sun Pictures, Utopia Films, retrieved 2024-03-04
  89. Boissoneault, Lorraine. "Are Blade Runner's Replicants "Human"? Descartes and Locke Have Some Thoughts". Smithsonian Magazine. Retrieved 2021-11-05.
  90. Ho, Chin-Chang; MacDorman, Karl F.; Pramono, Z.A. Dwi (2008). "Human Emotion and the Uncanny Valley: A GLM, MDS, and Isomap Analysis of Robot Video Ratings" (PDF). 2008 3rd ACM/IEEE International Conference on Human-Robot Interaction (HRI). Archived (PDF) from the original on 2008-08-22.

Sources

  • Asada, H. and Slotine, J.-J. E. (1986). Robot Analysis and Control. Wiley. ISBN 0-471-83029-1.
  • Arkin, Ronald C. (1998). Behavior-Based Robotics. MIT Press. ISBN 0-262-01165-4.
  • Brady, M., Hollerbach, J.M., Johnson, T., Lozano-Perez, T. and Mason, M. (1982), Robot Motion: Planning and Control. MIT Press. ISBN 0-262-02182-X.
  • Horn, Berthold, K. P. (1986). Robot Vision. MIT Press. ISBN 0-262-08159-8.
  • Craig, J. J. (1986). Introduction to Robotics: Mechanics and Control. Addison Wesley. ISBN 0-201-09528-9.
  • Everett, H. R. (1995). Sensors for Mobile Robots: Theory and Application. AK Peters. ISBN 1-56881-048-2.
  • Kortenkamp, D., Bonasso, R., Murphy, R. (1998). Artificial Intelligence and Mobile Robots. MIT Press. ISBN 0-262-61137-6.
  • Poole, D., Mackworth, A. and Goebel, R. (1998), Computational Intelligence: A Logical Approach. Oxford University Press. ISBN 0-19-510270-3.
  • Russell, R. A. (1990). Robot Tactile Sensing. Prentice Hall. ISBN 0-13-781592-1.
  • Russell, S. J. & Norvig, P. (1995). Artificial Intelligence: A Modern Approach. Prentice-Hall. Prentice Hall. ISBN 0-13-790395-2.

Further reading

  • Carpenter, J., Davis, J., Erwin‐Stewart, N., Lee. T., Bransford, J. & Vye, N. (2009). Gender representation in humanoid robots for domestic use. International Journal of Social Robotics (special issue). 1 (3), 261‐265. The Netherlands: Springer.
  • Carpenter, J., Davis, J., Erwin‐Stewart, N., Lee. T., Bransford, J. & Vye, N. (2008). Invisible machinery in function, not form: User expectations of a domestic humanoid robot. Proceedings of 6th conference on Design and Emotion. Hong Kong, China.
  • Williams, Karl P. (2004). Build Your Own Human Robots: 6 Amazing and Affordable Projects. McGraw-Hill/TAB Electronics. ISBN 0-07-142274-9. ISBN 978-0-07-142274-1.

Share this article:

This article uses material from the Wikipedia article Humanoid_robot, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.