Follitropin_subunit_beta

FSHB

FSHB

Protein-coding gene in the species Homo sapiens


Follitropin subunit beta also known as follicle-stimulating hormone beta subunit (FSH-B) is a protein that in humans is encoded by the FSHB gene.[5][6][7] Alternative splicing results in two transcript variants encoding the same protein.

Quick Facts Available structures, PDB ...

Function

The pituitary glycoprotein hormone family includes follicle-stimulating hormone, luteinizing hormone, chorionic gonadotropin, and thyroid-stimulating hormone. All of these glycoproteins consist of an identical alpha subunit and a hormone-specific beta subunit. This gene encodes the beta subunit of follicle-stimulating hormone. In conjunction with luteinizing hormone, follicle-stimulating hormone induces egg and sperm production.[7]

The FSHB gene in human DNA encodes the follicle-stimulating hormone subunit beta protein (FSH-B), or Follitropin Beta. More specifically, the FSHB gene encodes for the beta subunit of follicle-stimulating hormone (FSH). Therefore, proper transcription of FSHB allows for the proper production of FSH. FSH is a peptide hormone the pituitary gland produces that is involved with the reproductive system. FSH promotes follicular oocyte (egg) production, growth, and maturation and helps control a female's menstrual cycle. Additionally, FSH is involved in the male reproductive system by stimulating spermatogenesis (maturation of sperm cells) and initiating puberty. Studies show that variations in the FSHB gene can contribute to the likelihood of a woman becoming pregnant with fraternal, or dizygotic, twins.[8] This is because certain heritable variations of FSHB contribute to increased production of FSH from the pituitary gland, raising the levels of FSH found in a woman’s blood. It is also shown that women with these FSHB variants had their first menstrual cycle, children, and menopause at an earlier age than women without the variant.[8] This relates to having an increased risk of a woman bearing fraternal twins because higher levels of FSH will produce more eggs.[9] The more eggs a woman produces increases the chance of multiple eggs ovulating and becoming fertilized by sperm. In retrospect, depending on the type of variation, the FSHB gene could potentially cause infertility by the inability to produce enough FSH, in both males and females.[8] [10] [11] Additionally, low or no FSH can result in delayed puberty and risk of disease.[12] [13] Diseases associated with FSHB variants are hypogonadism, hypogonadotropic hypogonadism type 24 (HH24), and type 7 (HH7), and are possibly linked to polycystic ovary syndrome.[12] [13] [14]


References

  1. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  2. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. Watkins PC, Eddy R, Beck AK, Vellucci V, Leverone B, Tanzi RE, Gusella JF, Shows TB (Aug 1987). "DNA sequence and regional assignment of the human follicle-stimulating hormone beta-subunit gene to the short arm of human chromosome 11". DNA. 6 (3): 205–12. doi:10.1089/dna.1987.6.205. PMID 2885163.
  4. Shome B, Parlow AF, Liu WK, Nahm HS, Wen T, Ward DN (Sep 1989). "A reevaluation of the amino acid sequence of human follitropin beta-subunit". J Protein Chem. 7 (4): 325–39. doi:10.1007/BF01024882. PMID 3151250. S2CID 20497546.
  5. Lambalk C (Oct 25, 1998). "The endocrinology of dizygotic twinning in the human". Mol Cell Endocrinol. 145 (1–2): 97–102. doi:10.1016/s0303-7207(98)00175-0. PMID 9922105. S2CID 38939075.

Further reading



Share this article:

This article uses material from the Wikipedia article Follitropin_subunit_beta, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.