Class (set theory)
In set theory and its applications throughout mathematics, a class is a collection of sets (or sometimes other mathematical objects) that can be unambiguously defined by a property that all its members share. Classes act as a way to have setlike collections while differing from sets so as to avoid Russell's paradox (see § Paradoxes). The precise definition of "class" depends on foundational context. In work on Zermelo–Fraenkel set theory, the notion of class is informal, whereas other set theories, such as von Neumann–Bernays–Gödel set theory, axiomatize the notion of "proper class", e.g., as entities that are not members of another entity.
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages)

A class that is not a set (informally in Zermelo–Fraenkel) is called a proper class, and a class that is a set is sometimes called a small class. For instance, the class of all ordinal numbers, and the class of all sets, are proper classes in many formal systems.
In Quine's settheoretical writing, the phrase "ultimate class" is often used instead of the phrase "proper class" emphasising that in the systems he considers, certain classes cannot be members, and are thus the final term in any membership chain to which they belong.
Outside set theory, the word "class" is sometimes used synonymously with "set". This usage dates from a historical period where classes and sets were not distinguished as they are in modern settheoretic terminology.[1] Many discussions of "classes" in the 19th century and earlier are really referring to sets, or rather perhaps take place without considering that certain classes can fail to be sets.