In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral[Note 1] of a function f is a differentiable function F whose derivative is equal to the original function f. This can be stated symbolically as F' = f.[1][2] The process of solving for antiderivatives is called antidifferentiation (or indefinite integration), and its opposite operation is called differentiation, which is the process of finding a derivative. Antiderivatives are often denoted by capital Roman letters such as F and G.

The slope field of , showing three of the infinitely many solutions that can be produced by varying the arbitrary constant c.

Antiderivatives are related to definite integrals through the second fundamental theorem of calculus: the definite integral of a function over a closed interval where the function is Riemann integrable is equal to the difference between the values of an antiderivative evaluated at the endpoints of the interval.

In physics, antiderivatives arise in the context of rectilinear motion (e.g., in explaining the relationship between position, velocity and acceleration).[3] The discrete equivalent of the notion of antiderivative is antidifference.

Share this article:

This article uses material from the Wikipedia article Antiderivative, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.