100,000,000

100,000,000

100,000,000

Natural number


100,000,000 (one hundred million) is the natural number following 99,999,999 and preceding 100,000,001.

Quick Facts Cardinal, Ordinal ...

In scientific notation, it is written as 108.

East Asian languages treat 100,000,000 as a counting unit, significant as the square of a myriad, also a counting unit. In Chinese, Korean, and Japanese respectively it is yi (simplified Chinese: 亿; traditional Chinese: ; pinyin: ) (or Chinese: 萬萬; pinyin: wànwàn in ancient texts), eok (억/億) and oku (). These languages do not have single words for a thousand to the second, third, fifth powers, etc.

100,000,000 is also the fourth power of 100 and also the square of 10000.

Selected 9-digit numbers (100,000,001–999,999,999)

100,000,001 to 199,999,999

  • 100,000,007 = smallest nine digit prime[1]
  • 100,005,153 = smallest triangular number with 9 digits and the 14,142nd triangular number
  • 100,020,001 = 100012, palindromic square
  • 100,544,625 = 4653, the smallest 9-digit cube
  • 102,030,201 = 101012, palindromic square
  • 102,334,155 = Fibonacci number
  • 102,400,000 = 405
  • 104,060,401 = 102012 = 1014, palindromic square
  • 104,636,890 = number of trees with 25 unlabeled nodes[2]
  • 105,413,504 = 147
  • 107,890,609 = Wedderburn-Etherington number[3]
  • 111,111,111 = repunit, square root of 12345678987654321
  • 111,111,113 = Chen prime, Sophie Germain prime, cousin prime.
  • 113,379,904 = 106482 = 4843 = 226
  • 115,856,201 = 415
  • 119,481,296 = logarithmic number[4]
  • 120,528,657 = number of centered hydrocarbons with 27 carbon atoms[5]
  • 121,242,121 = 110112, palindromic square
  • 122,522,400 = least number such that , where = sum of divisors of m[6]
  • 123,454,321 = 111112, palindromic square
  • 123,456,789 = smallest zeroless base 10 pandigital number
  • 125,686,521 = 112112, palindromic square
  • 126,390,032 = number of 34-bead necklaces (turning over is allowed) where complements are equivalent[7]
  • 126,491,971 = Leonardo prime[8]
  • 129,140,163 = 317
  • 129,145,076 = Leyland number[9]
  • 129,644,790 = Catalan number[10]
  • 130,150,588 = number of 33-bead binary necklaces with beads of 2 colors where the colors may be swapped but turning over is not allowed[11]
  • 130,691,232 = 425
  • 134,217,728 = 5123 = 89 = 227
  • 134,218,457 = Leyland number[9]
  • 134,219,796 = number of 32-bead necklaces with 2 colors when turning over is not allowed; also number of output sequences from a simple 32-stage cycling shift register; also number of binary irreducible polynomials whose degree divides 32[12]
  • 136,048,896 = 116642 = 1084
  • 139,854,276 = 118262, the smallest zeroless base 10 pandigital square
  • 142,547,559 = Motzkin number[13]
  • 147,008,443 = 435
  • 148,035,889 = 121672 = 5293 = 236
  • 157,115,917 – number of parallelogram polyominoes with 24 cells.[14]
  • 157,351,936 = 125442 = 1124
  • 164,916,224 = 445
  • 165,580,141 = Fibonacci number
  • 167,444,795 = cyclic number in base 6
  • 170,859,375 = 157
  • 171,794,492 = number of reduced trees with 36 nodes[15]
  • 177,264,449 = Leyland number[9]
  • 179,424,673 = 10,000,000th prime number
  • 184,528,125 = 455
  • 185,794,560 = double factorial of 18
  • 188,378,402 = number of ways to partition {1,2,...,11} and then partition each cell (block) into subcells.[16]
  • 190,899,322 = Bell number[17]
  • 191,102,976 = 138242 = 5763 = 246
  • 192,622,052 = number of free 18-ominoes
  • 199,960,004 = number of surface-points of a tetrahedron with edge-length 9999[18]

200,000,000 to 299,999,999

  • 200,000,002 = number of surface-points of a tetrahedron with edge-length 10000[18]
  • 205,962,976 = 465
  • 210,295,326 = Fine number
  • 211,016,256 = number of primitive polynomials of degree 33 over GF(2)[19]
  • 212,890,625 = 1-automorphic number[20]
  • 214,358,881 = 146412 = 1214 = 118
  • 222,222,222 = repdigit
  • 222,222,227 = safe prime
  • 223,092,870 = the product of the first nine prime numbers, thus the ninth primorial
  • 225,058,681 = Pell number[21]
  • 225,331,713 = self-descriptive number in base 9
  • 229,345,007 = 475
  • 232,792,560 = superior highly composite number;[22] colossally abundant number;[23] the smallest number divisible by all the numbers 1 through 22
  • 240,882,152 = number of signed trees with 16 nodes[24]
  • 244,140,625 = 156252 = 1253 = 256 = 512
  • 244,389,457 = Leyland number[9]
  • 244,330,711 = n such that n | (3n + 5)[25]
  • 245,492,244 = number of 35-bead necklaces (turning over is allowed) where complements are equivalent[7]
  • 252,648,992 = number of 34-bead binary necklaces with beads of 2 colors where the colors may be swapped but turning over is not allowed[11]
  • 253,450,711 = Wedderburn-Etherington prime[3]
  • 254,803,968 = 485
  • 260,301,176 = number of 33-bead necklaces with 2 colors when turning over is not allowed; also number of output sequences from a simple 33-stage cycling shift register; also number of binary irreducible polynomials whose degree divides 33[26]
  • 267,914,296 = Fibonacci number
  • 268,435,456 = 163842 = 1284 = 167 = 414 = 228
  • 268,436,240 = Leyland number[9]
  • 268,473,872 = Leyland number[9]
  • 272,400,600 = the number of terms of the harmonic series required to pass 20
  • 275,305,224 = the number of magic squares of order 5, excluding rotations and reflections
  • 279,793,450 = number of trees with 26 unlabeled nodes[27]
  • 282,475,249 = 168072 = 495 = 710
  • 292,475,249 = Leyland number[9]

300,000,000 to 399,999,999

  • 308,915,776 = 175762 = 6763 = 266
  • 309,576,725 = number of centered hydrocarbons with 28 carbon atoms[5]
  • 312,500,000 = 505
  • 321,534,781 = Markov prime
  • 331,160,281 = Leonardo prime[8]
  • 333,333,333 = repdigit
  • 336,849,900 = number of primitive polynomials of degree 34 over GF(2)[19]
  • 345,025,251 = 515
  • 350,238,175 = number of reduced trees with 37 nodes[15]
  • 362,802,072 – number of parallelogram polyominoes with 25 cells[14]
  • 364,568,617 = Leyland number[9]
  • 365,496,202 = n such that n | (3n + 5)[25]
  • 367,567,200 = colossally abundant number,[23] superior highly composite number[28]
  • 380,204,032 = 525
  • 381,654,729 = the only polydivisible number that is also a zeroless pandigital number
  • 387,420,489 = 196832 = 7293 = 276 = 99 = 318 and in tetration notation 29
  • 387,426,321 = Leyland number[9]

400,000,000 to 499,999,999

  • 400,080,004 = 200022, palindromic square
  • 400,763,223 = Motzkin number[13]
  • 404,090,404 = 201022, palindromic square
  • 404,204,977 = number of prime numbers having ten digits[29]
  • 405,071,317 = 11 + 22 + 33 + 44 + 55 + 66 + 77 + 88 + 99
  • 410,338,673 = 177
  • 418,195,493 = 535
  • 429,981,696 = 207362 = 1444 = 128 = 100,000,00012 AKA a gross-great-great-gross (10012 great-great-grosses)
  • 433,494,437 = Fibonacci prime, Markov prime
  • 442,386,619 = alternating factorial[30]
  • 444,101,658 = number of (unordered, unlabeled) rooted trimmed trees with 27 nodes[31]
  • 444,444,444 = repdigit
  • 455,052,511 = number of primes under 1010
  • 459,165,024 = 545
  • 467,871,369 = number of triangle-free graphs on 14 vertices[32]
  • 477,353,376 = number of 36-bead necklaces (turning over is allowed) where complements are equivalent[7]
  • 477,638,700 = Catalan number[10]
  • 479,001,599 = factorial prime[33]
  • 479,001,600 = 12!
  • 481,890,304 = 219522 = 7843 = 286
  • 490,853,416 = number of 35-bead binary necklaces with beads of 2 colors where the colors may be swapped but turning over is not allowed[11]
  • 499,999,751 = Sophie Germain prime

500,000,000 to 599,999,999

  • 503,284,375 = 555
  • 505,294,128 = number of 34-bead necklaces with 2 colors when turning over is not allowed; also number of output sequences from a simple 34-stage cycling shift register; also number of binary irreducible polynomials whose degree divides 34[34]
  • 522,808,225 = 228652, palindromic square
  • 535,828,591 = Leonardo prime[8]
  • 536,870,911 = third composite Mersenne number with a prime exponent
  • 536,870,912 = 229
  • 536,871,753 = Leyland number[9]
  • 542,474,231 = k such that the sum of the squares of the first k primes is divisible by k.[35]
  • 543,339,720 = Pell number[21]
  • 550,731,776 = 565
  • 554,999,445 = a Kaprekar constant for digit length 9 in base 10
  • 555,555,555 = repdigit
  • 574,304,985 = 19 + 29 + 39 + 49 + 59 + 69 + 79 + 89 + 99[36]
  • 575,023,344 = 14-th derivative of xx at x=1[37]
  • 594,823,321 = 243892 = 8413 = 296
  • 596,572,387 = Wedderburn-Etherington prime[3]

600,000,000 to 699,999,999

  • 601,692,057 = 575
  • 612,220,032 = 187
  • 617,323,716 = 248462, palindromic square
  • 635,318,657 = the smallest number that is the sum of two fourth powers in two different ways (594 + 1584 = 1334 + 1344), of which Euler was aware.
  • 644,972,544 = 8643, 3-smooth number
  • 654,729,075 = double factorial of 19
  • 656,356,768 = 585
  • 666,666,666 = repdigit
  • 670,617,279 = highest stopping time integer under 109 for the Collatz conjecture

700,000,000 to 799,999,999

  • 701,408,733 = Fibonacci number
  • 714,924,299 = 595
  • 715,497,037 = number of reduced trees with 38 nodes[15]
  • 715,827,883 = Wagstaff prime,[38] Jacobsthal prime
  • 725,594,112 = number of primitive polynomials of degree 36 over GF(2)[19]
  • 729,000,000 = 270002 = 9003 = 306
  • 742,624,232 = number of free 19-ominoes
  • 751,065,460 = number of trees with 27 unlabeled nodes[39]
  • 774,840,978 = Leyland number[9]
  • 777,600,000 = 605
  • 777,777,777 = repdigit
  • 778,483,932 = Fine number
  • 780,291,637 = Markov prime
  • 787,109,376 = 1-automorphic number[20]
  • 797,790,928 = number of centered hydrocarbons with 29 carbon atoms[5]

800,000,000 to 899,999,999

  • 810,810,000 – smallest number with exactly 1000 factors
  • 815,730,721 = 138
  • 815,730,721 = 1694
  • 835,210,000 = 1704
  • 837,759,792 – number of parallelogram polyominoes with 26 cells.[14]
  • 844,596,301 = 615
  • 855,036,081 = 1714
  • 875,213,056 = 1724
  • 887,503,681 = 316
  • 888,888,888 – repdigit
  • 893,554,688 = 2-automorphic number[40]
  • 893,871,739 = 197
  • 895,745,041 = 1734

900,000,000 to 999,999,999

  • 906,150,257 = smallest counterexample to the Polya conjecture
  • 916,132,832 = 625
  • 923,187,456 = 303842, the largest zeroless pandigital square
  • 928,772,650 = number of 37-bead necklaces (turning over is allowed) where complements are equivalent[7]
  • 929,275,200 = number of primitive polynomials of degree 35 over GF(2)[19]
  • 942,060,249 = 306932, palindromic square
  • 981,706,832 = number of 35-bead necklaces with 2 colors when turning over is not allowed; also number of output sequences from a simple 35-stage cycling shift register; also number of binary irreducible polynomials whose degree divides 35[41]
  • 987,654,321 = largest zeroless pandigital number
  • 992,436,543 = 635
  • 997,002,999 = 9993, the largest 9-digit cube
  • 999,950,884 = 316222, the largest 9-digit square
  • 999,961,560 = largest triangular number with 9 digits and the 44,720th triangular number
  • 999,999,937 = largest 9-digit prime number
  • 999,999,999 = repdigit

References

  1. Sloane, N. J. A. (ed.). "Sequence A003617 (Smallest n-digit prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.

Share this article:

This article uses material from the Wikipedia article 100,000,000, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.